메뉴 건너뛰기




Volumn 24, Issue 6, 2009, Pages 913-932

A new iterative algorithm training SVM

Author keywords

Data classification; Descent feasible direction; Maximal margin classifier; Nearest points; Support vector machine

Indexed keywords

COMPUTATIONAL EXPERIMENT; CONVERGENCE PROPERTIES; CONVEX HULL; DATA CLASSIFICATION; DESCENT FEASIBLE DIRECTION; GEOMETRIC INTERPRETATION; ITERATIVE ALGORITHM; MAXIMAL MARGIN CLASSIFIER; NEAREST POINT; NEAREST POINTS; NUMBER OF ITERATIONS; SVM ALGORITHM; TRAINING SETS; TRAINING TIME;

EID: 70349629126     PISSN: 10556788     EISSN: 10294937     Source Type: Journal    
DOI: 10.1080/10556780902867906     Document Type: Article
Times cited : (4)

References (24)
  • 2
    • 0000667930 scopus 로고    scopus 로고
    • Training nu-supportvector classifiers: Theory and algorithms
    • C.-C. Chang and C.-J. Li, Training nu-SupportVector Classifiers: Theory and Algorithms, Neural Comput. 13 (2001), pp. 2119-2147.
    • (2001) Neural Comput. , vol.13 , pp. 2119-2147
    • Chang, C.-C.1    Li, C.-J.2
  • 3
    • 33746932071 scopus 로고    scopus 로고
    • A study on smo-type decomposition methods for support vector machines
    • P.-H. Chen, R.-E. Fan, and C.-J. Lin, A study on smo-type decomposition methods for support vector machines, IEEE Trans. Neural Networks 17 (2006), pp. 893-908.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, C.-J.3
  • 4
    • 84898984811 scopus 로고    scopus 로고
    • A Geometric Interpretation of v-SVM Classifiers
    • S. A. Solla, T. K. Leen, K.-R. Mller, eds., Cambridge, MA. MIT Press
    • D. Crisp and C. Burges, A Geometric Interpretation of v-SVM Classifiers, In Advances in Neural Information Processing Systems 12, S. A. Solla, T. K. Leen, K.-R. Mller, eds., Cambridge, MA. MIT Press, 2000.
    • (2000) In Advances in Neural Information Processing Systems , vol.12
    • Crisp, D.1    Burges, C.2
  • 5
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using the second-order information for training SVM
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin,Working set selection using the second-order information for training SVM, J. Mach. Learn. Res. 6 (2005), pp. 1889-1918.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 8
    • 0002274728 scopus 로고
    • Minimizing the quadratic form on a convex set SIAM
    • E.G. Gilbert, Minimizing the quadratic form on a convex set, SIAM J. Control. 4 (1966), pp. 61-79.
    • (1966) J. Control. , vol.4 , pp. 61-79
    • Gilbert, E.G.1
  • 11
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design,Mach
    • S.S. Keerthi and E.G. Gilbert, Convergence of a generalized SMO algorithm for SVM classifier design,Mach. Learn. 46 (2002), pp. 351-360.
    • (2002) Learn , vol.46 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 14
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • C.-J. Lin, On the convergence of the decomposition method for support vector machines, IEEE Trans. Neural Networks 12 (2001), pp. 1288-1298.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 1288-1298
    • Lin, C.-J.1
  • 15
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • C.-J. Lin, Asymptotic convergence of an SMO algorithm without any assumptions, IEEE Trans. Neural Networks, 13 (2002), pp.248-250.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 248-250
    • Lin, C.-J.1
  • 16
    • 0016025580 scopus 로고
    • Finding the point of a polyhedron closet to the origin SIAM
    • B.F. Mitchell, V.F. Dem'yanov, and V.N. Malozemov, Finding the point of a polyhedron closet to the origin, SIAM J. Control. 12 (1974), pp. 19-26.
    • (1974) J. Control. , vol.12 , pp. 19-26
    • Mitchell, B.F.1    Dem'Yanov, V.F.2    Malozemov, V.N.3
  • 18
    • 33750584105 scopus 로고    scopus 로고
    • Available at
    • G. Rätsch, Benchmark Repository. Available at http://ida.first. fraunhofer.de/projects/bench/benchmarks.htm
    • Benchmark Repository
    • Rätsch, G.1
  • 20
    • 0142039767 scopus 로고    scopus 로고
    • On the optimal parameter choice in í-support vector machines
    • I. Steinwart, On the optimal parameter choice in í-support vector machines, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003), pp. 1274-1284.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1274-1284
    • Steinwart, I.1
  • 21
    • 19344375172 scopus 로고    scopus 로고
    • Rigorous proof of termination of SMO algorithm for support vector machines
    • N. Takahashi and T. Nishi, Rigorous proof of termination of SMO algorithm for support vector machines, IEEE Trans. Neural Network 16 (2005), pp. 774-776.
    • (2005) IEEE Trans. Neural Network , vol.16 , pp. 774-776
    • Takahashi, N.1    Nishi, T.2
  • 22
    • 2942586739 scopus 로고    scopus 로고
    • A generalized S-K algorithm for learning í-SVM classifiers
    • Q. Tao, G.Wu, and J.Wang, A generalized S-K algorithm for learning í-SVM classifiers, Pattern Recognition Lett. 25 (2004), pp. 1165-1171.
    • (2004) Pattern Recognition Lett. , vol.25 , pp. 1165-1171
    • Tao, Q.1    Wu, G.2    Wang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.