-
1
-
-
0008202233
-
Duality and geometry in SVM classifiers
-
P. Langley, ed., Morgan Kaufmann
-
K.P. Bennett and E.J. Bredensteiner, Duality and Geometry in SVM Classifiers, in Proceedings of the 17th International Conference on Machine Learning, P. Langley, ed., Morgan Kaufmann, 2000, pp. 57-64.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning
, pp. 57-64
-
-
Bennett, K.P.1
Bredensteiner, E.J.2
-
2
-
-
0000667930
-
Training nu-supportvector classifiers: Theory and algorithms
-
C.-C. Chang and C.-J. Li, Training nu-SupportVector Classifiers: Theory and Algorithms, Neural Comput. 13 (2001), pp. 2119-2147.
-
(2001)
Neural Comput.
, vol.13
, pp. 2119-2147
-
-
Chang, C.-C.1
Li, C.-J.2
-
3
-
-
33746932071
-
A study on smo-type decomposition methods for support vector machines
-
P.-H. Chen, R.-E. Fan, and C.-J. Lin, A study on smo-type decomposition methods for support vector machines, IEEE Trans. Neural Networks 17 (2006), pp. 893-908.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, pp. 893-908
-
-
Chen, P.-H.1
Fan, R.-E.2
Lin, C.-J.3
-
4
-
-
84898984811
-
A Geometric Interpretation of v-SVM Classifiers
-
S. A. Solla, T. K. Leen, K.-R. Mller, eds., Cambridge, MA. MIT Press
-
D. Crisp and C. Burges, A Geometric Interpretation of v-SVM Classifiers, In Advances in Neural Information Processing Systems 12, S. A. Solla, T. K. Leen, K.-R. Mller, eds., Cambridge, MA. MIT Press, 2000.
-
(2000)
In Advances in Neural Information Processing Systems
, vol.12
-
-
Crisp, D.1
Burges, C.2
-
5
-
-
29144499905
-
Working set selection using the second-order information for training SVM
-
R.-E. Fan, P.-H. Chen, and C.-J. Lin,Working set selection using the second-order information for training SVM, J. Mach. Learn. Res. 6 (2005), pp. 1889-1918.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
6
-
-
27244459306
-
-
A. Leaonardis and H. Bischof, eds., Austria
-
V. Franc and V. Hlavàĉ, A Simple Learning Algorithm for Maximal Margin Classifier, in proceedings Workshop on the Kernel and Subspace Methods for Computer Vision ad joint to ICANN, A. Leaonardis and H. Bischof, eds., Austria, 2001, pp. 1-11.
-
(2001)
A Simple Learning Algorithm for Maximal Margin Classifier, in Proceedings Workshop on the Kernel and Subspace Methods for Computer Vision Ad Joint to ICANN
, pp. 1-11
-
-
Franc, V.1
Hlavàĉ, V.2
-
8
-
-
0002274728
-
Minimizing the quadratic form on a convex set SIAM
-
E.G. Gilbert, Minimizing the quadratic form on a convex set, SIAM J. Control. 4 (1966), pp. 61-79.
-
(1966)
J. Control.
, vol.4
, pp. 61-79
-
-
Gilbert, E.G.1
-
11
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design,Mach
-
S.S. Keerthi and E.G. Gilbert, Convergence of a generalized SMO algorithm for SVM classifier design,Mach. Learn. 46 (2002), pp. 351-360.
-
(2002)
Learn
, vol.46
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
12
-
-
0033640690
-
A fast iterative nearest point algorithm for support vector machine classifier design
-
S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthyet, A fast iterative nearest point algorithm for support vector machine classifier design, IEEE Trans. Neural Networks 11 (2000), pp. 124-136.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, pp. 124-136
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthyet, K.R.K.4
-
13
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy, Improvements to Platt's SMO algorithm for SVM classifier design, Neural Comput. 13 (2001), pp. 637-649.
-
(2001)
Neural Comput.
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
14
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
C.-J. Lin, On the convergence of the decomposition method for support vector machines, IEEE Trans. Neural Networks 12 (2001), pp. 1288-1298.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 1288-1298
-
-
Lin, C.-J.1
-
15
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumptions
-
C.-J. Lin, Asymptotic convergence of an SMO algorithm without any assumptions, IEEE Trans. Neural Networks, 13 (2002), pp.248-250.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 248-250
-
-
Lin, C.-J.1
-
16
-
-
0016025580
-
Finding the point of a polyhedron closet to the origin SIAM
-
B.F. Mitchell, V.F. Dem'yanov, and V.N. Malozemov, Finding the point of a polyhedron closet to the origin, SIAM J. Control. 12 (1974), pp. 19-26.
-
(1974)
J. Control.
, vol.12
, pp. 19-26
-
-
Mitchell, B.F.1
Dem'Yanov, V.F.2
Malozemov, V.N.3
-
17
-
-
34548563151
-
-
B. Schölkopf et al., eds., Cambridge, MA, MIT Press
-
J.C. Platt, Fast Training of Support Vector Machines using Sequential Minimal Optimization, in Advances in Kernel Method-Support Vector Learning, B. Schölkopf et al., eds., Cambridge, MA, MIT Press, 1999, pp. 185-208.
-
(1999)
Fast Training of Support Vector Machines Using Sequential Minimal Optimization, in Advances in Kernel Method-Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
18
-
-
33750584105
-
-
Available at
-
G. Rätsch, Benchmark Repository. Available at http://ida.first. fraunhofer.de/projects/bench/benchmarks.htm
-
Benchmark Repository
-
-
Rätsch, G.1
-
19
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A.J. Smola, R.C.Williamson, and P.L. Bartlett, New support vector algorithms, Neural Computation 12 (2000), pp. 1207-1245.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Bartlett, P.L.3
-
20
-
-
0142039767
-
On the optimal parameter choice in í-support vector machines
-
I. Steinwart, On the optimal parameter choice in í-support vector machines, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003), pp. 1274-1284.
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, pp. 1274-1284
-
-
Steinwart, I.1
-
21
-
-
19344375172
-
Rigorous proof of termination of SMO algorithm for support vector machines
-
N. Takahashi and T. Nishi, Rigorous proof of termination of SMO algorithm for support vector machines, IEEE Trans. Neural Network 16 (2005), pp. 774-776.
-
(2005)
IEEE Trans. Neural Network
, vol.16
, pp. 774-776
-
-
Takahashi, N.1
Nishi, T.2
-
22
-
-
2942586739
-
A generalized S-K algorithm for learning í-SVM classifiers
-
Q. Tao, G.Wu, and J.Wang, A generalized S-K algorithm for learning í-SVM classifiers, Pattern Recognition Lett. 25 (2004), pp. 1165-1171.
-
(2004)
Pattern Recognition Lett.
, vol.25
, pp. 1165-1171
-
-
Tao, Q.1
Wu, G.2
Wang, J.3
-
24
-
-
38049079830
-
-
Haikou, China, August
-
S.-S. Zhou, H.-W. Liu, and F.Ye, The variant of gaussian kernel and its model selection method, inThird International Conference on Natural Computation, Haikou, China, 2007, August, pp. 683-687.
-
(2007)
The Variant of Gaussian Kernel and Its Model Selection Method, InThird International Conference on Natural Computation
, pp. 683-687
-
-
Zhou, S.-S.1
Liu, H.-W.2
|