메뉴 건너뛰기




Volumn 80, Issue 3, 2009, Pages

Approach to universality in axisymmetric bubble pinch-off

Author keywords

[No Author keywords available]

Indexed keywords

AIR BUBBLES; AXISYMMETRIC; BUBBLE PINCH-OFF; BUBBLE RUPTURE; CAVITY COLLAPSE; GAS BUBBLE; GAS INJECTION; INTEGRAL SIMULATIONS; INVISCID FLUIDS; MILLISECOND RANGE; ORDERS OF MAGNITUDE; PHYSICAL REALIZATION; PINCHOFF; TIME-SCALES; UNIVERSAL BEHAVIORS;

EID: 70349516090     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.036305     Document Type: Article
Times cited : (36)

References (30)
  • 8
    • 56849118993 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.101.214502
    • J. C. Burton and P. Taborek, Phys. Rev. Lett. 101, 214502 (2008). 10.1103/PhysRevLett.101.214502
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 214502
    • Burton, J.C.1    Taborek, P.2
  • 9
    • 57149084697 scopus 로고    scopus 로고
    • 10.1063/1.3009297
    • J. M. Gordillo, Phys. Fluids 20, 112103 (2008). 10.1063/1.3009297
    • (2008) Phys. Fluids , vol.20 , pp. 112103
    • Gordillo, J.M.1
  • 13
    • 0001589281 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.69.865
    • J. Eggers, Rev. Mod. Phys. 69, 865 (1997). 10.1103/RevModPhys.69.865
    • (1997) Rev. Mod. Phys. , vol.69 , pp. 865
    • Eggers, J.1
  • 22
  • 25
    • 70349486063 scopus 로고    scopus 로고
    • See EPAPS Document No. E-PLEEE8-80-009909 for supplementary material. For more information on EPAPS
    • See EPAPS Document No. E-PLEEE8-80-009909 for supplementary material. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
  • 26
    • 70349507996 scopus 로고    scopus 로고
    • A Taylor expansion of the cavity profile around the neck yields r (z) = r0 + (2 r/z2) Δ z2 /2= r0 +(1/ rc) (Δ z2 /2). To collapse these profiles one can rescale the radial length scale with r′ =r/ r0 and the axial length scale with z′ =z/ r0 rc to obtain the time-independent shape r′ =1+Δ z′2 /2.
    • A Taylor expansion of the cavity profile around the neck yields r (z) = r0 + (2 r/z2) Δ z2 /2= r0 +(1/ rc) (Δ z2 /2). To collapse these profiles one can rescale the radial length scale with r′ =r/ r0 and the axial length scale with z′ =z/ r0 rc to obtain the time-independent shape r′ =1+Δ z′2 /2.
  • 28
    • 70349497523 scopus 로고    scopus 로고
    • In the BI data we verified that | dα/dlnτ | | α-2 α2 |
    • In the BI data we verified that | dα/dlnτ | | α-2 α2 |.
  • 29
    • 70349496603 scopus 로고    scopus 로고
    • note
    • The long duration of the universal regime for the quasistatic case A can be understood as follows: in case A the maximum diameter of the bubble is only slightly larger than the orifice in contrast to the other two situations where the bubble is much larger than the needle exit. Accordingly, the neck in case A possesses already initially a rather symmetrical shape with its upper half being very similar to the lower one, which is prerequisite for the universal solution to be applicable.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.