메뉴 건너뛰기




Volumn 80, Issue 2, 2009, Pages

Out-of-equilibrium phase re-entrance(s) in long-range interacting systems

Author keywords

[No Author keywords available]

Indexed keywords

EQUILIBRIUM PHASE; HAMILTONIAN MEAN FIELD MODELS; INTERACTING SYSTEM; LONG RANGE INTERACTIONS; MAGNETIZED STATE; NUMERICAL SIMULATION; PARAMETER RANGE; QUASI-STATIONARY STATE; SECOND-ORDER PHASE TRANSITION; SYSTEM SIZE; THEORETICAL PREDICTION; VIOLENT RELAXATION;

EID: 70349513810     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.021138     Document Type: Article
Times cited : (32)

References (39)
  • 1
    • 46149103163 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.77.214437
    • C. Timm and C. J. Pye, Phys. Rev. B 77, 214437 (2008). 10.1103/PhysRevB.77.214437
    • (2008) Phys. Rev. B , vol.77 , pp. 214437
    • Timm, C.1    Pye, C.J.2
  • 2
    • 44949123481 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.77.061110
    • C. Güven, Phys. Rev. E 77, 061110 (2008). 10.1103/PhysRevE.77.061110
    • (2008) Phys. Rev. e , vol.77 , pp. 061110
    • Güven, C.1
  • 3
    • 67650162526 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.79.066114
    • S. Han, S. Park, and B. Kim, Phys. Rev. E 79, 066114 (2009). 10.1103/PhysRevE.79.066114
    • (2009) Phys. Rev. e , vol.79 , pp. 066114
    • Han, S.1    Park, S.2    Kim, B.3
  • 4
    • 28844480429 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.95.236001
    • M. Sellitto and J. Kurchan, Phys. Rev. Lett. 95, 236001 (2005). 10.1103/PhysRevLett.95.236001
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 236001
    • Sellitto, M.1    Kurchan, J.2
  • 5
    • 14244262902 scopus 로고    scopus 로고
    • 10.1016/j.physleta.2004.09.057
    • C. Ekiz, Phys. Lett. A 332, 121 (2004). 10.1016/j.physleta.2004.09.057
    • (2004) Phys. Lett. A , vol.332 , pp. 121
    • Ekiz, C.1
  • 6
    • 0030579453 scopus 로고    scopus 로고
    • 10.1209/epl/i1996-00274-6
    • L. Radzihovsky, EPL 36, 595 (1996). 10.1209/epl/i1996-00274-6
    • (1996) EPL , vol.36 , pp. 595
    • Radzihovsky, L.1
  • 7
    • 21444442314 scopus 로고    scopus 로고
    • 10.1086/177977
    • P. H. Chavanis, Astrophys. J. 471, 385 (1996). 10.1086/177977
    • (1996) Astrophys. J. , vol.471 , pp. 385
    • Chavanis, P.H.1
  • 14
    • 11544301796 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.80.692
    • V. Latora, Phys. Rev. Lett. 80, 692 (1998). 10.1103/PhysRevLett.80.692
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 692
    • Latora, V.1
  • 15
    • 1842563884 scopus 로고    scopus 로고
    • 10.1016/j.physa.2004.01.041
    • Y. Y. Yamaguchi, Physica A 337, 36 (2004). 10.1016/j.physa.2004.01.041
    • (2004) Physica A , vol.337 , pp. 36
    • Yamaguchi, Y.Y.1
  • 20
    • 33645150293 scopus 로고    scopus 로고
    • 10.1016/j.physa.2005.08.054
    • C. Benedetti, Physica A 364, 197 (2006). 10.1016/j.physa.2005.08.054
    • (2006) Physica A , vol.364 , pp. 197
    • Benedetti, C.1
  • 22
    • 33751201873 scopus 로고    scopus 로고
    • 10.1140/epjb/e2006-00405-5
    • P. H. Chavanis, Eur. Phys. J. B 53, 487 (2006). 10.1140/epjb/e2006-00405- 5
    • (2006) Eur. Phys. J. B , vol.53 , pp. 487
    • Chavanis, P.H.1
  • 28
    • 70349540585 scopus 로고    scopus 로고
    • Ph.D. thesis, ENS Lyon
    • P. H. Chavanis, Ph.D. thesis, ENS Lyon, 1996.
    • (1996)
    • Chavanis, P.H.1
  • 29
    • 0001214534 scopus 로고
    • 10.1103/PhysRevE.52.2361
    • M. Antoni and S. Ruffo, Phys. Rev. E 52, 2361 (1995). 10.1103/PhysRevE.52.2361
    • (1995) Phys. Rev. e , vol.52 , pp. 2361
    • Antoni, M.1    Ruffo, S.2
  • 30
    • 27344459943 scopus 로고    scopus 로고
    • 10.1016/j.physa.2005.06.043
    • P. H. Chavanis, Physica A 359, 177 (2006). 10.1016/j.physa.2005.06.043
    • (2006) Physica A , vol.359 , pp. 177
    • Chavanis, P.H.1
  • 31
    • 70349558784 scopus 로고    scopus 로고
    • edited by N. Antonic, C. J. van Duijn, W. Jager, and A. Mikelic, Proceedings of the Conference on Multiscale Problems in Science and Technology, (Springer, Berlin
    • P. H. Chavanis, Statistical Mechanics of Violent Relaxation in Stellar Systems, edited by, N. Antonic, C. J. van Duijn, W. Jager, and, A. Mikelic, Proceedings of the Conference on Multiscale Problems in Science and Technology, (Springer, Berlin, 2002).
    • (2002) Statistical Mechanics of Violent Relaxation in Stellar Systems
    • Chavanis, P.H.1
  • 32
    • 23844475129 scopus 로고    scopus 로고
    • 10.1140/epjb/e2005-00234-0
    • P. H. Chavanis, Eur. Phys. J. B 46, 61 (2005). 10.1140/epjb/e2005-00234-0
    • (2005) Eur. Phys. J. B , vol.46 , pp. 61
    • Chavanis, P.H.1
  • 33
    • 3543025213 scopus 로고    scopus 로고
    • 10.1209/epl/i2004-10028-6
    • M. Antoni, EPL 66, 645 (2004). 10.1209/epl/i2004-10028-6
    • (2004) EPL , vol.66 , pp. 645
    • Antoni, M.1
  • 34
    • 14844303779 scopus 로고    scopus 로고
    • 10.1051/0004-6361:20041114
    • P. H. Chavanis, Astron. Astrophys. 432, 117 (2005). 10.1051/0004-6361: 20041114
    • (2005) Astron. Astrophys. , vol.432 , pp. 117
    • Chavanis, P.H.1
  • 35
    • 36649024632 scopus 로고    scopus 로고
    • 10.1016/j.physa.2007.10.026
    • P. H. Chavanis, Physica A 387, 787 (2008). 10.1016/j.physa.2007.10.026
    • (2008) Physica A , vol.387 , pp. 787
    • Chavanis, P.H.1
  • 38
    • 70349524619 scopus 로고    scopus 로고
    • These parameters are related to those introduced in Ref. by U=∈/4+1/2, β=2η, f0 = η0 /N=μ/ (2π), k=2π/N, x=Δθ, y= (2/π) Δp, and the functions F in Ref. are related to the Fermi integrals by Fk (1/y) = 2 (k+1) /2 y I (k-1) /2 (y).
    • These parameters are related to those introduced in Ref. by U=∈/4+1/2, β=2η, f0 = η0 /N=μ/ (2π), k=2π/N, x=Δθ, y= (2/π) Δp, and the functions F in Ref. are related to the Fermi integrals by Fk (1/y) = 2 (k+1) /2 y I (k-1) /2 (y).
  • 39
    • 70349535717 scopus 로고    scopus 로고
    • Here, the term "unstable" means that the homogeneous Lynden-Bell distribution is not a maximum entropy state, i.e. (i) it is not the most mixed state, and (ii) it is dynamically unstable with respect to the Vlasov equation. Hence, it should not be reached as a result of violent relaxation. One possibility is that the system converges to the spatially inhomogeneous Lynden-Bell distribution 8 with MQSS 0 which is the maximum entropy state (most mixed) in that case. Another possibility, always to consider, is that the system does not converge towards the maximum entropy state, i.e., the relaxation is incomplete (see Ref.).
    • Here, the term "unstable" means that the homogeneous Lynden-Bell distribution is not a maximum entropy state, i.e. (i) it is not the most mixed state, and (ii) it is dynamically unstable with respect to the Vlasov equation. Hence, it should not be reached as a result of violent relaxation. One possibility is that the system converges to the spatially inhomogeneous Lynden-Bell distribution 8 with MQSS 0 which is the maximum entropy state (most mixed) in that case. Another possibility, always to consider, is that the system does not converge towards the maximum entropy state, i.e., the relaxation is incomplete (see Ref.).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.