-
2
-
-
0034363921
-
-
10.1063/1.1050284
-
N. Laskin, Chaos 10, 780 (2000). 10.1063/1.1050284
-
(2000)
Chaos
, vol.10
, pp. 780
-
-
Laskin, N.1
-
4
-
-
33646823954
-
-
10.1016/j.physa.2006.02.027
-
N. Laskin and G. Zaslavsky, Physica A 368, 38 (2006). 10.1016/j.physa.2006.02.027
-
(2006)
Physica A
, vol.368
, pp. 38
-
-
Laskin, N.1
Zaslavsky, G.2
-
5
-
-
70349555735
-
-
arXiv:math-ph/0510099.
-
R. Hermann, e-print arXiv:math-ph/0510099.
-
-
-
Hermann, R.1
-
7
-
-
0033752167
-
-
10.1021/jp993323u
-
B. J. West, J. Phys. Chem. B 104, 3830 (2000). 10.1021/jp993323u
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 3830
-
-
West, B.J.1
-
8
-
-
4544250038
-
-
10.1063/1.1769611
-
M. Naber, J. Math. Phys. 45, 3339 (2004). 10.1063/1.1769611
-
(2004)
J. Math. Phys.
, vol.45
, pp. 3339
-
-
Naber, M.1
-
9
-
-
33847774569
-
-
10.1103/PhysRevE.75.037201
-
A. Iomin, Phys. Rev. E 75, 037201 (2007). 10.1103/PhysRevE.75.037201
-
(2007)
Phys. Rev. e
, vol.75
, pp. 037201
-
-
Iomin, A.1
-
10
-
-
41349105905
-
-
10.1016/j.physleta.2008.01.037
-
V. E. Tarasov, Phys. Lett. A 372, 2984 (2008). 10.1016/j.physleta.2008. 01.037
-
(2008)
Phys. Lett. A
, vol.372
, pp. 2984
-
-
Tarasov, V.E.1
-
11
-
-
0040307478
-
-
10.1016/0370-1573(90)90099-N
-
J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990). 10.1016/0370-1573(90)90099-N
-
(1990)
Phys. Rep.
, vol.195
, pp. 127
-
-
Bouchaud, J.-P.1
Georges, A.2
-
12
-
-
0004360655
-
-
edited by R. Hilfer (World Scientific, Singapore
-
Fractional Calculus in Physics, edited by, R. Hilfer, (World Scientific, Singapore, 2000).
-
(2000)
Fractional Calculus in Physics
-
-
-
13
-
-
0002641421
-
-
10.1016/S0370-1573(00)00070-3
-
R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000). 10.1016/S0370- 1573(00)00070-3
-
(2000)
Phys. Rep.
, vol.339
, pp. 1
-
-
Metzler, R.1
Klafter, J.2
-
15
-
-
0036887936
-
-
10.1016/S0370-1573(02)00331-9
-
G. M. Zaslavsky, Phys. Rep. 371, 461 (2002). 10.1016/S0370-1573(02)00331- 9
-
(2002)
Phys. Rep.
, vol.371
, pp. 461
-
-
Zaslavsky, G.M.1
-
16
-
-
0036855685
-
-
10.1063/1.1535007
-
I. M. Sokolov, J. Klafter, and A. Blumen, Phys. Today 55 (11), 48 (2002). 10.1063/1.1535007
-
(2002)
Phys. Today
, vol.55
, Issue.11
, pp. 48
-
-
Sokolov, I.M.1
Klafter, J.2
Blumen, A.3
-
17
-
-
0030464353
-
-
10.1016/0960-0779(95)00125-5
-
F. Mainardi, Chaos, Solitons Fractals 7, 1461 (1996). 10.1016/0960-0779(95)00125-5
-
(1996)
Chaos, Solitons Fractals
, vol.7
, pp. 1461
-
-
Mainardi, F.1
-
20
-
-
43449090362
-
-
10.1016/j.jmaa.2008.03.061
-
J. Dong and M. Xu, J. Math. Anal. Appl. 344, 1005 (2008). 10.1016/j.jmaa.2008.03.061
-
(2008)
J. Math. Anal. Appl.
, vol.344
, pp. 1005
-
-
Dong, J.1
Xu, M.2
-
21
-
-
34247620479
-
-
10.1063/1.2716203
-
S. Wang and M. Xu, J. Math. Phys. 48, 043502 (2007). 10.1063/1.2716203
-
(2007)
J. Math. Phys.
, vol.48
, pp. 043502
-
-
Wang, S.1
Xu, M.2
-
23
-
-
41549125959
-
-
10.1063/1.2842069
-
E. K. Lenzi, B. F. de Oliveira, L. R. da Silva, and L. R. Evangelista, J. Math. Phys. 49, 032108 (2008). 10.1063/1.2842069
-
(2008)
J. Math. Phys.
, vol.49
, pp. 032108
-
-
Lenzi, E.K.1
De Oliveira, B.F.2
Da Silva, L.R.3
Evangelista, L.R.4
-
24
-
-
0001811866
-
-
edited by J. Lebowitz and E. W. Montroll (North-Holland, Amsterdam
-
E. W. Montroll and M. F. Shlesinger, in Studies in Statistical Mechanics, edited by, J. Lebowitz, and, E. W. Montroll, (North-Holland, Amsterdam, 1984), Vol. 11.
-
(1984)
Studies in Statistical Mechanics
, vol.11
-
-
Montroll, E.W.1
Shlesinger, M.F.2
-
30
-
-
70349540605
-
-
note
-
Fractional derivation was developed as a generalization of integer order derivatives and is defined as the inverse operation to the fractional integral. Fractional integration of the order of α is defined by the operator (see, e.g.,) Ia xα f (x) = 1 Γ (α) ∫ax f (y) (x-y) α-1 dy, where α>0, x>a, and Γ (z) is the Gamma function. Therefore, the fractional derivative is the inverse operator to Ia xα as Da xα f (x) = Ia x -α and Ia xα = Da x -α. Its explicit form is Da x -α = 1 Γ (-α) ∫ax f (y) (x-y) -1-α dy. For arbitrary α>0 this integral diverges, and as a result of a regularization procedure, there are two alternative definitions of Da x -α. For an integer n defined as n-1<α
-
-
-
-
31
-
-
0000261297
-
-
10.2307/1968538
-
M. H. Stone, Ann. Math. 33, 643 (1932). 10.2307/1968538
-
(1932)
Ann. Math.
, vol.33
, pp. 643
-
-
Stone, M.H.1
-
32
-
-
37749053842
-
-
10.1016/0378-4371(86)90060-9
-
G. H. Weiss and S. Havlin, Physica A 134, 474 (1986). 10.1016/0378-4371(86)90060-9
-
(1986)
Physica A
, vol.134
, pp. 474
-
-
Weiss, G.H.1
Havlin, S.2
-
33
-
-
19644380864
-
-
10.1103/PhysRevLett.93.120603
-
E. Baskin and A. Iomin, Phys. Rev. Lett. 93, 120603 (2004). 10.1103/PhysRevLett.93.120603
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 120603
-
-
Baskin, E.1
Iomin, A.2
-
35
-
-
70349546829
-
-
Analogously to the FSE 1, following Ref., one introduces the Planck length LP = G/ c3, time TP = G/ c5, mass MP = c/G, and energy EP = MP c2, where , G, and c are the Planck constant, the gravitational constant, and the speed of light, respectively. Therefore, quantum mechanics of a particle with mass m is described by the dimensionless units x/ LP →x, y/ LP →y, and t/ TP →t, while the dimensionless Planck constant is defined as the inverse dimensionless mass h∼ = MP /m. Note that the dimensionless potential is now V (x) →V (x) / MP c2.
-
Analogously to the FSE 1, following Ref., one introduces the Planck length LP = G/ c3, time TP = G/ c5, mass MP = c/G, and energy EP = MP c2, where, G, and c are the Planck constant, the gravitational constant, and the speed of light, respectively. Therefore, quantum mechanics of a particle with mass m is described by the dimensionless units x/ LP →x, y/ LP →y, and t/ TP →t, while the dimensionless Planck constant is defined as the inverse dimensionless mass h∼ = MP /m. Note that the dimensionless potential is now V (x) →V (x) / MP c2.
-
-
-
-
38
-
-
0009377144
-
-
10.1088/0305-4470/19/10/024
-
B. Gaveau and L. Schulman, J. Phys. A 19, 1833 (1986). 10.1088/0305-4470/19/10/024
-
(1986)
J. Phys. A
, vol.19
, pp. 1833
-
-
Gaveau, B.1
Schulman, L.2
-
40
-
-
0009905110
-
-
NATO ASI Series B: Physics, edited by I. V. Lerner, J. P. Keating, and D. E. Khmelnitskii (Kluwer Academic, New York
-
M. V. Berry and J. P. Keating, in Supersymmetry and Trace Formulas, NATO ASI Series B: Physics, edited by, I. V. Lerner, J. P. Keating, and, D. E. Khmelnitskii, (Kluwer Academic, New York, 1999), Vol. 370.
-
(1999)
Supersymmetry and Trace Formulas
, vol.370
-
-
Berry, M.V.1
Keating, J.P.2
-
41
-
-
0032647538
-
-
10.1137/S0036144598347497
-
M. V. Berry and J. P. Keating, SIAM Rev. 41, 236 (1999). 10.1137/S0036144598347497
-
(1999)
SIAM Rev.
, vol.41
, pp. 236
-
-
Berry, M.V.1
Keating, J.P.2
-
42
-
-
70349543734
-
-
edited by M. M. Dodson and J. A. G. Vickers (Cambridge University Press, Cambridge
-
J. V. Armitage, in Number Theory and Dynamical Systems, edited by, M. M. Dodson, and, J. A. G. Vickers, (Cambridge University Press, Cambridge, 1989).
-
(1989)
Number Theory and Dynamical Systems
-
-
Armitage, J.V.1
-
44
-
-
0031556889
-
-
10.1088/0305-4470/30/1/021
-
S. Nonnenmacher and A. Voros, J. Phys. A 30, 295 (1997). 10.1088/0305-4470/30/1/021
-
(1997)
J. Phys. A
, vol.30
, pp. 295
-
-
Nonnenmacher, S.1
Voros, A.2
-
45
-
-
0344009692
-
-
10.1016/j.physleta.2003.10.038
-
G. P. Berman and M. Vishik, Phys. Lett. A 319, 352 (2003). 10.1016/j.physleta.2003.10.038
-
(2003)
Phys. Lett. A
, vol.319
, pp. 352
-
-
Berman, G.P.1
Vishik, M.2
-
47
-
-
62949118423
-
-
This question was also addressed to the fractional generalization of the quantum master equation [see 10.1007/s11232-009-0015-5
-
This question was also addressed to the fractional generalization of the quantum master equation [see V. E. Tarasov, Theor. Math. Phys. 158, 179 (2009).] and to the quantum-mechanical version of Brownian motion. 10.1007/s11232-009- 0015-5
-
(2009)
Theor. Math. Phys.
, vol.158
, pp. 179
-
-
Tarasov, V.E.1
|