-
1
-
-
0343207346
-
-
10.1103/PhysRevLett.64.2074
-
L. P. Lévy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990). 10.1103/PhysRevLett.64.2074
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 2074
-
-
Lévy, L.P.1
Dolan, G.2
Dunsmuir, J.3
Bouchiat, H.4
-
2
-
-
2842573666
-
-
10.1103/PhysRevLett.67.3578
-
V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen, W. J. Gallagher, and A. Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991). 10.1103/PhysRevLett.67.3578
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 3578
-
-
Chandrasekhar, V.1
Webb, R.A.2
Brady, M.J.3
Ketchen, M.B.4
Gallagher, W.J.5
Kleinsasser, A.6
-
4
-
-
0035950072
-
-
10.1038/35101552
-
A. Fuhrer, S. Luscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Nature (London) 413, 822 (2001). 10.1038/35101552
-
(2001)
Nature (London)
, vol.413
, pp. 822
-
-
Fuhrer, A.1
Luscher, S.2
Ihn, T.3
Heinzel, T.4
Ensslin, K.5
Wegscheider, W.6
Bichler, M.7
-
5
-
-
0001031732
-
-
10.1103/PhysRevLett.84.2223
-
A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. García, and P. M. Petroff, Phys. Rev. Lett. 84, 2223 (2000). 10.1103/PhysRevLett.84.2223
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2223
-
-
Lorke, A.1
Luyken, R.J.2
Govorov, A.O.3
Kotthaus, J.P.4
García, J.M.5
Petroff, P.M.6
-
6
-
-
0038271825
-
-
10.1103/PhysRevLett.90.186801
-
M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel, Phys. Rev. Lett. 90, 186801 (2003). 10.1103/PhysRevLett.90.186801
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 186801
-
-
Bayer, M.1
Korkusinski, M.2
Hawrylak, P.3
Gutbrod, T.4
Michel, M.5
Forchel, A.6
-
7
-
-
35148819158
-
-
10.1103/PhysRevLett.99.146808
-
N. A. J. M. Kleemans, I. M. A. Bominaar-Silkens, V. M. Fomin, V. N. Gladilin, D. Granados, A. G. Taboada, J. M. García, P. Offermans, U. Zeitler, P. C. M. Christianen, J. C. Maan, J. T. Devreese, and P. M. Koenraad, Phys. Rev. Lett. 99, 146808 (2007). 10.1103/PhysRevLett.99.146808
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 146808
-
-
Kleemans, N.A.J.M.1
Bominaar-Silkens, I.M.A.2
Fomin, V.M.3
Gladilin, V.N.4
Granados, D.5
Taboada, A.G.6
García, J.M.7
Offermans, P.8
Zeitler, U.9
Christianen, P.C.M.10
Maan, J.C.11
Devreese, J.T.12
Koenraad, P.M.13
-
8
-
-
4243972759
-
-
10.1103/PhysRevB.66.081309
-
A. O. Govorov, S. E. Ulloa, K. Karrai, and R. J. Warburton, Phys. Rev. B 66, 081309 (R) (2002). 10.1103/PhysRevB.66.081309
-
(2002)
Phys. Rev. B
, vol.66
, pp. 081309
-
-
Govorov, A.O.1
Ulloa, S.E.2
Karrai, K.3
Warburton, R.J.4
-
9
-
-
2342529631
-
-
10.1103/PhysRevLett.92.126402
-
E. Ribeiro, A. O. Govorov, W. Carvalho, Jr., and G. Medeiros-Ribeiro, Phys. Rev. Lett. 92, 126402 (2004). 10.1103/PhysRevLett.92.126402
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 126402
-
-
Ribeiro, E.1
Govorov, A.O.2
Carvalho Jr., W.3
Medeiros-Ribeiro, G.4
-
10
-
-
41749094921
-
-
10.1103/PhysRevLett.100.136405
-
I. R. Sellers, V. R. Whiteside, I. L. Kuskovsky, A. O. Govorov, and B. D. McCombe, Phys. Rev. Lett. 100, 136405 (2008). 10.1103/PhysRevLett.100.136405
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 136405
-
-
Sellers, I.R.1
Whiteside, V.R.2
Kuskovsky, I.L.3
Govorov, A.O.4
McCombe, B.D.5
-
12
-
-
34547602619
-
-
10.1063/1.2761799
-
H. S. Ling and C. P. Lee, J. Appl. Phys. 102, 024314 (2007). 10.1063/1.2761799
-
(2007)
J. Appl. Phys.
, vol.102
, pp. 024314
-
-
Ling, H.S.1
Lee, C.P.2
-
13
-
-
28344442498
-
-
10.1063/1.2058212
-
P. Offermans P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, Appl. Phys. Lett. 87, 131902 (2005). 10.1063/1.2058212
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 131902
-
-
Offermans, P.1
Koenraad, P.M.2
Wolter, J.H.3
Granados, D.4
García, J.M.5
Fomin, V.M.6
Gladilin, V.N.7
Devreese, J.T.8
-
14
-
-
37749023778
-
-
10.1103/PhysRevB.76.235320
-
V. M. Fomin, V. N. Gladilin, S. N. Klimin, J. T. Devreese, N. A. J. M. Kleemans, and P. M. Koenraad, Phys. Rev. B 76, 235320 (2007). 10.1103/PhysRevB.76.235320
-
(2007)
Phys. Rev. B
, vol.76
, pp. 235320
-
-
Fomin, V.M.1
Gladilin, V.N.2
Klimin, S.N.3
Devreese, J.T.4
Kleemans, N.A.J.M.5
Koenraad, P.M.6
-
15
-
-
0000375244
-
-
10.1103/PhysRevB.58.R7508
-
A. Kuther, M. Bayer, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Schäfer, and J. P. Reithmaier, Phys. Rev. B 58, R7508 (1998). 10.1103/PhysRevB.58.R7508
-
(1998)
Phys. Rev. B
, vol.58
, pp. 7508
-
-
Kuther, A.1
Bayer, M.2
Forchel, A.3
Gorbunov, A.4
Timofeev, V.B.5
Schäfer, F.6
Reithmaier, J.P.7
-
16
-
-
13444306509
-
-
10.1016/j.physe.2004.08.050
-
A. Babinski, S. Awirothananon, J. Lapointe, Z. Wasilewski, S. Raymond, and M. Potemski, Physica E 26, 190 (2005). 10.1016/j.physe.2004.08.050
-
(2005)
Physica e
, vol.26
, pp. 190
-
-
Babinski, A.1
Awirothananon, S.2
Lapointe, J.3
Wasilewski, Z.4
Raymond, S.5
Potemski, M.6
-
17
-
-
29744442721
-
-
10.1103/PhysRevB.72.113305
-
R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, Phys. Rev. B 72, 113305 (2005). 10.1103/PhysRevB.72.113305
-
(2005)
Phys. Rev. B
, vol.72
, pp. 113305
-
-
Young, R.J.1
Stevenson, R.M.2
Shields, A.J.3
Atkinson, P.4
Cooper, K.5
Ritchie, D.A.6
Groom, K.M.7
Tartakovskii, A.I.8
Skolnick, M.S.9
-
18
-
-
58149299808
-
-
10.1103/PhysRevLett.101.267402
-
M. F. Tsai, H. Lin, C. H. Lin, S. D. Lin, S. Y. Wang, M. C. Lo, S. J. Cheng, M. C. Lee, and W. H. Chang, Phys. Rev. Lett. 101, 267402 (2008). 10.1103/PhysRevLett.101.267402
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 267402
-
-
Tsai, M.F.1
Lin, H.2
Lin, C.H.3
Lin, S.D.4
Wang, S.Y.5
Lo, M.C.6
Cheng, S.J.7
Lee, M.C.8
Chang, W.H.9
-
19
-
-
29744466652
-
-
10.1103/PhysRevB.72.205311
-
C. E. Pryor and M.-E. Pistol, Phys. Rev. B 72, 205311 (2005). 10.1103/PhysRevB.72.205311
-
(2005)
Phys. Rev. B
, vol.72
, pp. 205311
-
-
Pryor, C.E.1
Pistol, M.-E.2
-
20
-
-
70349451121
-
-
For the two equivalent potential valleys in a QR, it may be expected that the exciton wave function is distributed symmetrically in both valleys. However, the calculation reveals that the lowest energy state is the localized exciton in one valley (i.e., either of the two) due to its stronger e-h Coulomb interaction. In other words, the exciton Bohr radius (about 11 nm for InAs QR) is slightly smaller than the ring diameter, which concentrates the exciton wave function into one side of the QR.
-
For the two equivalent potential valleys in a QR, it may be expected that the exciton wave function is distributed symmetrically in both valleys. However, the calculation reveals that the lowest energy state is the localized exciton in one valley (i.e., either of the two) due to its stronger e-h Coulomb interaction. In other words, the exciton Bohr radius (about 11 nm for InAs QR) is slightly smaller than the ring diameter, which concentrates the exciton wave function into one side of the QR.
-
-
-
|