메뉴 건너뛰기




Volumn 8, Issue 3, 2009, Pages 772-782

Multistep outflow experiments to determine soil physical and carbon dioxide production parameters

Author keywords

BIO, Biomass; DPM, Decomposable plant material; HUM, Humic organic matter; MSO, Multistep outflow; RPM, Resistant plant material; SCE UA, Shuffled complex evolution University of Arizona; SSR, Sum of squared residuals; WFPS, Water filled pore space; WRCP, Water reduction control parameters; WSSR, Weighted sum of squared residuals

Indexed keywords

CARBON DIOXIDE; ESTIMATION METHOD; EXPERIMENTAL STUDY; HYDRAULIC PROPERTY; OPTIMIZATION; OUTFLOW; PORE SPACE; SOIL ORGANIC MATTER; SOIL RESPIRATION; SOIL STRUCTURE; SOIL WATER; TRANSPORT PROCESS; WATER CONTENT;

EID: 70349336751     PISSN: None     EISSN: 15391663     Source Type: Journal    
DOI: 10.2136/vzj2008.0041     Document Type: Article
Times cited : (21)

References (63)
  • 1
    • 0025656132 scopus 로고    scopus 로고
    • Adams, J.M., H. Faure, L. Faure-Denard, J.M. McGlade, and F.I. Woodward. 1990. Increases in terrestial carbon storage from the last glacial maximum to the present. Nature 348:711-714.
  • 2
    • 0000521645 scopus 로고    scopus 로고
    • Anderson, J.M. 1992. Responses of soils to climate change. Adv. Ecol. Res. 22:163-210.
  • 3
    • 0030302293 scopus 로고    scopus 로고
    • Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47:151-163.
  • 4
    • 43849097255 scopus 로고    scopus 로고
    • Bauer, J., M. Herbst, J.A. Huisman, L. Weihermüller, and H. Vereecken. 2008a. Sensitivity of simulated soil heterotrophic respiration to varying temperature and moisture reduction functions. Geoderma 145:17-27.
  • 5
    • 53649108943 scopus 로고    scopus 로고
    • Bauer, J., M.U.F. Kirschbaum, L. Weihermüller, J.A. Huisman, M. Herbst, and H. Vereecken. 2008b. Temperature response of wheat decomposition is more complex than the common approaches of most multi-pool models. Soil Biol. Biochem. 40:2780-2786.
  • 6
    • 33646178350 scopus 로고    scopus 로고
    • Bayer, A., H.-J. Vogel, O. Ippisch, and K. Roth. 2005. Do effective properties for unsaturated weakly layered porous media exist? An experimental study. Hydrol. Earth Syst. Sci. 9:517-522.
  • 7
    • 0034314015 scopus 로고    scopus 로고
    • Chen, H., M.E. Harmon, R.P. Griffiths, and W. Hicks. 2000. Effects of temperature and moisture on carbon respired from decomposing woody roots. For. Ecol. Manage. 138:51-64.
  • 8
    • 70349354877 scopus 로고    scopus 로고
    • Coleman, K., and D.S. Jenkinson. 1996. RothC-26.3: A model for the turnover of carbon on soil. p. 143-159. In D.S. Powlson et al. (ed.) Evaluation of soil organic matter models using existing, long-term datasets. NATO ASI Ser. I, Vol. 38. Springer-Verlag, Berlin.
  • 9
    • 0035073281 scopus 로고    scopus 로고
    • Dalias, P., J.M. Anderson, P. Bottner, and M.M. Couteaux. 2001a. Temperature response of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Global Change Biol. 6:181-192.
  • 10
    • 0034966159 scopus 로고    scopus 로고
    • Dalias, P., J.M. Anderson, P. Bottner, and M.M. Couteaux. 2001b. Long-term effects of temperature on carbon mineralization processes. Soil Biol. Biochem. 33:1049-1057.
  • 11
    • 0025652816 scopus 로고    scopus 로고
    • Donelly, P.K., J.A. Entry, D.L. Crawford, and K. Comack. 1990. Cellulose and lignin degradation in forest soils: Response to moisture, temperature and acidity. Microb. Ecol. 20:281-295.
  • 12
    • 70349366392 scopus 로고    scopus 로고
    • Doran, J.W., L.N. Mielke, and S. Stamatiadis. 1988. Microbial activity and N cycling as regulated by soil water-filled pore space. Pap. 132. In Proc. ISTRO Conf., 11th, Edinburgh, Scotland. 11-15 July 1988. Int. Soil Tillage Res. Org., Wageningen, the Netherlands.
  • 13
    • 0026445234 scopus 로고    scopus 로고
    • Duan, Q.Y., V.K. Gupta, and S. Sorooshian. 1992. Effective and efficient global minimization for conceptual rainfall-runoff models. Water Resour. Res. 82:1015-1031.
  • 14
    • 0028449781 scopus 로고    scopus 로고
    • Duan, Q.Y., S. Sorooshian, and V.K. Gupta. 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158:265-284.
  • 15
    • 0027836714 scopus 로고    scopus 로고
    • Eswaran, H., E. van den Berg, and P. Reich. 1993. Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.
  • 16
    • 0032146639 scopus 로고    scopus 로고
    • Falloon, P., P. Smith, K. Coleman, and S. Marshall. 1998. Estimating the size of the inert organic matter pool from total organic carbon content for use in the Rothamsted carbon model. Soil Biol. Biochem. 30:1207-1211.
  • 17
    • 0033526762 scopus 로고    scopus 로고
    • Fang, C., and J.B. Moncrieff. 1999. A model for soil CO2 production and transport: 1. Model description. Agric. For. Meteorol. 95:225-236.
  • 18
    • 0001518997 scopus 로고    scopus 로고
    • Franko, U., B. Oelschlagel, and S. Scheck. 1995. Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecol. Modell. 81:213-222.
  • 19
    • 0141684909 scopus 로고    scopus 로고
    • Garnier, P., C. Neel, A. Aita, S. Recous, F. Lafolie, and B. Mary. 2003. Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation. Eur. J. Soil Sci. 54:555-568.
  • 20
    • 0031468525 scopus 로고    scopus 로고
    • Franko, U., G.J. Crocker, P.R. Grace, J. Klir, M. Körschens, P.R. Poulton, and D.D. Richter. 1997. Simulating trends in soil organic carbon in long-term experiments using the CANDY model. Geoderma 81:109-120.
  • 21
    • 0034690062 scopus 로고    scopus 로고
    • Giardina, C.P., and G. Ryan. 2006. Evidence that decomposition rates of organic carbon in mineral soils do not vary with temperature. Nature 404:858-861.
  • 22
    • 85063527370 scopus 로고    scopus 로고
    • Glinski, J., and W. Stepniewski. 1985. Soil aeration and its role for plants. CRC Press, Boca Raton, FL.
  • 23
    • 0000867524 scopus 로고    scopus 로고
    • Greaves, R.R., and E.G. Carter. 1920. Influence of moisture on the bacterial activities of the soil. Soil Sci. 10:361-387.
  • 24
    • 0000866472 scopus 로고    scopus 로고
    • Hanssen, S., H.E. Jensen, N.E. Nielsen, and H. Svendsen. 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fert. Res. 27:245-259.
  • 25
    • 32944470387 scopus 로고    scopus 로고
    • Hashimoto, S., and H. Komatsu. 2006. Relationship between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: Implications for field studies through sensitivity analyses. J. For. Res. 11:41-50.
  • 26
    • 43149098733 scopus 로고    scopus 로고
    • Herbst, M., H.J. Hellebrand, J. Bauer, J.A. Huisman, J. Šimůnek, L. Weihermüller, A. Graf, J. Vanderborght, and H. Vereecken. 2008. Multiyear heterotrophic soil respiration: Evaluation of a coupled CO2 transport and carbon turnover model. Ecol. Modell. 214:271-283.
  • 27
    • 0031946143 scopus 로고    scopus 로고
    • Hollenbeck, K.J., and K.H. Jensen. 1998. Experimental evidence of randomness and nonuniqueness in unsaturated outflow experiments designed for hydraulic parameter estimation. Water Resour. Res. 34:595-602.
  • 28
    • 0028162346 scopus 로고    scopus 로고
    • Jensen, C., B. Stougaard, and H.S. Ostergaard. 1994. Simulation of nitrogen dynamics in farmland area of Denmark (1989-1993). Soil Use Manage. 10:111-118.
  • 29
    • 12344273461 scopus 로고    scopus 로고
    • Jones, C., C. McConnell, K. Coleman, P. Fox, P. Falloon, D. Jenkinson, and D. Powlson. 2005. Global climate change and soil carbon stocks: Predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol. 11:154-166.
  • 30
    • 0033974022 scopus 로고    scopus 로고
    • Kirschbaum, M.U.F. 2000. Will changes in soil organic carbon act as positive or negative feedback on global warming? Biogeochemistry 48:21-51.
  • 31
    • 0030621253 scopus 로고    scopus 로고
    • Kuczera, G. 1997. Efficient subspace probabilistic parameter optimization for catchment models. Water Resour. Res. 33:177-185.
  • 32
    • 0021516358 scopus 로고    scopus 로고
    • Linn, D.M., and J.W. Doran. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48:1267-1272.
  • 33
    • 0032401862 scopus 로고    scopus 로고
    • Lomander, A., T. Kätterer, and O. Andren. 1998. Carbon dioxide evolution from top- and subsoil as affected by moisture and constant and fluctuating temperature. Soil Biol. Biochem. 30:2017-2022.
  • 34
    • 0141460645 scopus 로고    scopus 로고
    • Lou, Y., Z. Li, and T. Zhang. 2003. Soil CO2 flux in relation to dissolved organic carbon, soil temperature and moisture in a subtropical arable soil of China. J. Environ. Sci. 15:715-720.
  • 35
    • 37049046538 scopus 로고    scopus 로고
    • Millington, R.J., and J.M. Quirk. 1961. Permeability of porous solids. Trans. Faraday Soc. 57:1200-1207.
  • 36
    • 0034281797 scopus 로고    scopus 로고
    • Moldrup, P., T. Olesen, J. Gamst, P. Schjønning, T. Yamaguchi, and D.E. Rolston. 2000. Predicting the gas diffusion coefficient in repacked soil: Water- induced linear reduction model. Soil Sci. Soc. Am. J. 64:1588-1594.
  • 37
    • 0000416589 scopus 로고    scopus 로고
    • Molina, A.E., and P. Smith. 1998. Modeling carbon and nitrogen processes in soils. Adv. Agron. 62:253-298.
  • 38
    • 0027334662 scopus 로고    scopus 로고
    • Mous, S.L.J. 1993. Identification of the movement of water in unsaturated soils: The problem of identifiability of the model. J. Hydrol. 143:153-167.
  • 39
    • 0000808327 scopus 로고    scopus 로고
    • Orchard, V.A., and F.J. Cook. 1983. Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 15:447-453.
  • 40
    • 34248351077 scopus 로고    scopus 로고
    • Pansu, M., S. Sarmiento, K. Metselaar, D. Hervé, and P. Bottner. 2007. Modelling the transformations and sequestration of soil organic matter in two contrasting ecosystems of the Andes. Eur. J. Soil Sci. 58:775-785.
  • 41
    • 0028388818 scopus 로고    scopus 로고
    • Parton, W.J., and P.E. Rasmussen. 1994. Long-term effects of residue management in wheat/fallow: Century model configuration. Soil Sci. Soc. Am. J. 58:530-536.
  • 42
    • 0037374287 scopus 로고    scopus 로고
    • Paul, K.I., P.J. Polglase, A.M. O'Connell, J.C. Carlyse, P.J. Smethurst, and P.K. Khanna. 2003. Defining the relation between soil water content and net mineralization. Eur. J. Soil Sci. 54:39-47.
  • 43
    • 0034009113 scopus 로고    scopus 로고
    • Post, W., and K. Kwon. 2000. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biol. 6:317-327.
  • 44
    • 70349369007 scopus 로고    scopus 로고
    • Prentice, I., G. Farquhar, M. Fasham, M. Goulden, M. Heimann, V. Jaramillo, H. Kheshgi, C. Le Quéré, R. Scholes, and D. Wallace. 2001. The carbon cycle and atmospheric carbon dioxide. p. 183-237. In J. Houghton et al. (ed.) Climate change 2001: The scientific basis. Cambridge Univ. Press, Cambridge, UK.
  • 45
    • 0037337840 scopus 로고    scopus 로고
    • Pumpanen, J., H. Ilvesniemi, and P. Hari. 2003. A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci. Soc. Am. J. 67:402-413.
  • 46
    • 0030717583 scopus 로고    scopus 로고
    • Rodrigo, A., S. Recous, C. Neel, and B. Mary. 1997. Modelling temperature and moisture effects on C-N transformation in soils: Comparison of nine models. Ecol. Modell. 102:325-339.
  • 47
    • 70349348561 scopus 로고    scopus 로고
    • Rout, S.K., and S.R. Gupta. 1989. Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litter quality in forest ecosystems of Siwaliks in northern India. Acta Oecol. 10:229-244.
  • 48
    • 0032996427 scopus 로고    scopus 로고
    • Schjønning, P., I.K. Thomsen, J.P. Møberg, H. de Jong, K. Kristensen, and B.T. Christensen. 1999. Turnover of organic matter in differently textured soils: I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89:177-198.
  • 49
    • 73849167093 scopus 로고    scopus 로고
    • Seifert, J. 1962. The influence of the soil structure and moisture content on the number of bacteria and the degree of nitrification. Folia Microbiol. 7:234-238.
  • 50
    • 0027525713 scopus 로고    scopus 로고
    • Šimůnek, J., and D.L. Suarez. 1993. Modeling of carbon dioxide transport and production in soil: 1. Model development. Water Resour. Res. 29:487-497.
  • 51
    • 70349344017 scopus 로고    scopus 로고
    • Šimůnek, J., D.L. Suarez, and M. Sejna. 1996. The UNSATCHEM software package for simulating the one-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium and kinetic chemistry. Version 2.0. Rep. 141. U.S. Salinity Lab., Riverside, CA.
  • 52
    • 1542381016 scopus 로고    scopus 로고
    • Skjemstad, J.O., L.R. Spouncer, B. Cowie, and R.S. Swift. 2004. Calibration of the Rothamstad organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust. J. Soil Res. 42:79-88.
  • 53
    • 0025570351 scopus 로고    scopus 로고
    • Skopp, J., M.D. Jawson, and J.W. Doran. 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54:1619-1625.
  • 54
    • 0031439311 scopus 로고    scopus 로고
    • Smith, P., J.U. Smith, D.S. Powlson, W.B. McGill, J.R.M. Arah, O.G. Chertov, et al. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153-225.
  • 55
    • 0018656401 scopus 로고    scopus 로고
    • Sophocleous, M. 1979. Analysis of water and heat flow in unsaturated-saturated porous media. Water Resour. Res. 15:1195-1206.
  • 56
    • 0027451173 scopus 로고    scopus 로고
    • Suarez, D.L., and J. Šimůnek. 1993. Modeling of carbon dioxide transport and production in soil: 2. Parameter selection, sensitivity analysis, and comparison of model predictions to field data. Water Resour. Res. 29:499-513.
  • 57
    • 0033024343 scopus 로고    scopus 로고
    • Thomsen, I.K., P. Schjønning, B. Jensen, K. Kristensen, and B.T. Christensen. 1999. Turnover of organic matter in different textured soil: II. Microbial activity as influenced by soil water regimes. Geoderma 89:199-218.
  • 58
    • 0018907660 scopus 로고    scopus 로고
    • Topp, G.C., J.L. Davis, and A.P. Annan. 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 16:574-582.
  • 59
    • 33846424453 scopus 로고    scopus 로고
    • Turcu, V.E., S.B. Scott, and D. Or. 2005. Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Vadose Zone J. 4:1161-1169.
  • 60
    • 0034690165 scopus 로고    scopus 로고
    • Valentini, R., G. Matteucci, A.J. Dolman, E.D. Schulze, C. Rebman, E.J. Moors, et al. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404:861-865.
  • 61
    • 70349363009 scopus 로고    scopus 로고
    • Van Cleve, K., and D. Sprague. 1971. Respiration rates in the forest floor of birch and aspen stands in interior Alaska. Arct. Alp. Res. 3:17-26.
  • 62
    • 0019057216 scopus 로고    scopus 로고
    • van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.
  • 63
    • 34248366877 scopus 로고    scopus 로고
    • Zimmermann, M., J. Leifeld, M.W.I. Schmidt, P. Smith, and J. Fuhrer. 2007. Measured soil organic matter fractions can be related to pools in the RothC model. Eur. J. Soil Sci. 58:658-667.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.