-
1
-
-
11744373290
-
-
10.1007/BF01491891
-
E. Schrödinger, Naturwiss. 23, 807 (1935). 10.1007/BF01491891
-
(1935)
Naturwiss.
, vol.23
, pp. 807
-
-
Schrödinger, E.1
-
2
-
-
28444476996
-
-
10.1038/nature04251
-
D. Leibfried, Nature (London) 438, 639 (2005). 10.1038/nature04251
-
(2005)
Nature (London)
, vol.438
, pp. 639
-
-
Leibfried, D.1
-
3
-
-
28444481383
-
-
10.1038/nature04279
-
H. Häffner, Nature (London) 438, 643 (2005). 10.1038/nature04279
-
(2005)
Nature (London)
, vol.438
, pp. 643
-
-
Häffner, H.1
-
4
-
-
52949146716
-
-
10.1038/nature07288
-
S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J. M. Raimond, and S. Haroche, Nature (London) 455, 510 (2008). 10.1038/nature07288
-
(2008)
Nature (London)
, vol.455
, pp. 510
-
-
Deléglise, S.1
Dotsenko, I.2
Sayrin, C.3
Bernu, J.4
Brune, M.5
Raimond, J.M.6
Haroche, S.7
-
5
-
-
34547991747
-
-
10.1038/nature06054
-
A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, Nature (London) 448, 784 (2007). 10.1038/nature06054
-
(2007)
Nature (London)
, vol.448
, pp. 784
-
-
Ourjoumtsev, A.1
Jeong, H.2
Tualle-Brouri, R.3
Grangier, P.4
-
6
-
-
34250336515
-
-
10.1038/nature05896
-
H. J. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, Nature (London) 447, 836 (2007). 10.1038/nature05896
-
(2007)
Nature (London)
, vol.447
, pp. 836
-
-
Plantenberg, H.J.1
De Groot, P.C.2
Harmans, C.J.P.M.3
Mooij, J.E.4
-
7
-
-
0043250228
-
-
10.1103/RevModPhys.75.715
-
W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). 10.1103/RevModPhys.75.715
-
(2003)
Rev. Mod. Phys.
, vol.75
, pp. 715
-
-
Zurek, W.H.1
-
9
-
-
35948935650
-
-
10.1103/PhysRevLett.99.180403
-
J. Kofler and Č. Brukner, Phys. Rev. Lett. 99, 180403 (2007). 10.1103/PhysRevLett.99.180403
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 180403
-
-
Kofler, J.1
-
11
-
-
0000486090
-
-
J. S. Bell, Phys. 1, 195 (1964).
-
(1964)
Phys.
, vol.1
, pp. 195
-
-
Bell, J.S.1
-
12
-
-
70349373749
-
-
arXiv:0907.1679.
-
M. E. Goggin, e-print arXiv:0907.1679.
-
-
-
Goggin, M.E.1
-
15
-
-
38349085041
-
-
10.1103/PhysRevLett.100.026804
-
N. S. Williams and A. N. Jordan, Phys. Rev. Lett. 100, 026804 (2008). 10.1103/PhysRevLett.100.026804
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 026804
-
-
Williams, N.S.1
Jordan, A.N.2
-
17
-
-
67749088161
-
-
10.1038/nature08172
-
G. Kirchmair, Nature (London) 460, 494 (2009). 10.1038/nature08172
-
(2009)
Nature (London)
, vol.460
, pp. 494
-
-
Kirchmair, G.1
-
18
-
-
36049056258
-
-
10.1103/PhysRevLett.23.880
-
J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969). 10.1103/PhysRevLett.23.880
-
(1969)
Phys. Rev. Lett.
, vol.23
, pp. 880
-
-
Clauser, J.F.1
Horne, M.2
Shimony, A.3
Holt, R.A.4
-
19
-
-
33749481161
-
-
Based on intuition, we build a hierarchical scale for LGIs based on the difference between the quantum expectation value and the classical bound. In different contexts, alternative definitions might provide a better insight: see 10.1103/PhysRevLett.97.140406;
-
Based on intuition, we build a hierarchical scale for LGIs based on the difference between the quantum expectation value and the classical bound. In different contexts, alternative definitions might provide a better insight: see A. Cabello, Phys. Rev. Lett. 97, 140406 (2006) 10.1103/PhysRevLett.97.140406
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 140406
-
-
Cabello, A.1
-
20
-
-
33749464559
-
-
10.1103/PhysRevLett.97.140407
-
M. Barbieri, P. Mataloni, F. De Martini, G. Vallone, and A. Cabello, Phys. Rev. Lett. 97, 140407 (2006). On a separate note, we observe that experimentalists might prefer to test the one including less terms, both for the sake of simplicity and because shorter chains might lead to smaller statistical uncertainties (see). 10.1103/PhysRevLett.97.140407
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 140407
-
-
Barbieri, M.1
Mataloni, P.2
De Martini, F.3
Vallone, G.4
Cabello, A.5
-
21
-
-
70349360418
-
-
We have not been able to find an optimality proof of the symmetrical choice of angles, although optimality it is partially supported by some numerical calculations. Intuition suggests that this should be the case since biasing one of the angles to enhance the violation of one of the subinequalities in Eq. 10 or 11 might reduce the amount of violation in many others involving that same term.
-
We have not been able to find an optimality proof of the symmetrical choice of angles, although optimality it is partially supported by some numerical calculations. Intuition suggests that this should be the case since biasing one of the angles to enhance the violation of one of the subinequalities in Eq. 10 or 11 might reduce the amount of violation in many others involving that same term.
-
-
-
|