메뉴 건너뛰기




Volumn 5519 LNCS, Issue , 2009, Pages 42-51

Hybrid hierarchical classifiers for hyperspectral data analysis

Author keywords

[No Author keywords available]

Indexed keywords

BINARY CLASSIFICATION; BINARY CLASSIFIERS; BINARY HIERARCHICAL CLASSIFIERS; CLASS HIERARCHIES; CLASSIFICATION ACCURACY; DATA SETS; HIERARCHICAL CLASSIFIERS; HIGH DIMENSIONAL SPACES; HYBRID ALGORITHMS; HYPERSPECTRAL; HYPERSPECTRAL DATA ANALYSIS; MULTI-CLASS PROBLEMS; SAMPLE SIZES; TREE ALGORITHMS;

EID: 70349312673     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02326-2_5     Document Type: Conference Paper
Times cited : (3)

References (10)
  • 2
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • Kumar, S., Ghosh, J., Crawford, M.M.: Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis & Applications 5(2), 210-220 (2002)
    • (2002) Pattern Analysis & Applications , vol.5 , Issue.2 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 3
    • 33947525422 scopus 로고    scopus 로고
    • Margin trees for high-dimensional classification
    • Tibshirani, R., Hastie, T.: Margin trees for high-dimensional classification. J. Mach. Learn. Res. 8, 637-652 (2007)
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 637-652
    • Tibshirani, R.1    Hastie, T.2
  • 4
    • 21144446383 scopus 로고    scopus 로고
    • Rajan, S., Ghosh, J.: An empirical comparison of hierarchical vs. two-level approaches to multiclass problems. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, 3077, pp. 283-292. Springer, Heidelberg (2004)
    • Rajan, S., Ghosh, J.: An empirical comparison of hierarchical vs. two-level approaches to multiclass problems. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 283-292. Springer, Heidelberg (2004)
  • 5
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Kumar, S., Ghosh, J., Crawford, M.M.: Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. on Geosci. and Remote Sens. 39(7), 1368-1379 (2001)
    • (2001) IEEE Trans. on Geosci. and Remote Sens , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 7
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers EC-14(3), 326-334 (1965)
    • (1965) IEEE Transactions on Electronic Computers , vol.EC-14 , Issue.3 , pp. 326-334
    • Cover, T.M.1
  • 10
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham, J., Chen, Y., Crawford, M.M., Ghosh, J.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. and Remote Sens. 43(3), 492-501 (2005)
    • (2005) IEEE Trans. Geosci. and Remote Sens , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.