-
2
-
-
0004095143
-
-
edited by R. Kapral and R. Showalter (Kluwer, Dordrecht
-
Chemical Waves and Patterns, edited by, R. Kapral, and, R. Showalter, (Kluwer, Dordrecht, 1995).
-
(1995)
Chemical Waves and Patterns
-
-
-
4
-
-
0000638990
-
-
10.1103/PhysRevLett.61.329
-
W. J. Firth, Phys. Rev. Lett. 61, 329 (1988). 10.1103/PhysRevLett.61.329
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 329
-
-
Firth, W.J.1
-
5
-
-
84971947664
-
-
10.1017/S0022112090003603
-
S. Douady, J. Fluid Mech. 221, 383 (1990). 10.1017/S0022112090003603
-
(1990)
J. Fluid Mech.
, vol.221
, pp. 383
-
-
Douady, S.1
-
10
-
-
0001617876
-
-
10.1103/PhysRevE.54.5107;
-
O. Rudzick and A. Pikovsky, Phys. Rev. E 54, 5107 (1996) 10.1103/PhysRevE.54.5107
-
(1996)
Phys. Rev. e
, vol.54
, pp. 5107
-
-
Rudzick, O.1
Pikovsky, A.2
-
11
-
-
0000712133
-
-
10.1016/S0370-1573(01)00025-4
-
G. Boffetta, Phys. Rep. 356, 367 (2002). 10.1016/S0370-1573(01)00025-4
-
(2002)
Phys. Rep.
, vol.356
, pp. 367
-
-
Boffetta, G.1
-
12
-
-
37649026967
-
-
10.1103/PhysRevE.66.065202
-
S. Wang, Phys. Rev. E 66, 065202 (R) (2002). 10.1103/PhysRevE.66.065202
-
(2002)
Phys. Rev. e
, vol.66
, pp. 065202
-
-
Wang, S.1
-
15
-
-
4043125667
-
-
10.1142/S0218127404009648
-
P. G. Lind, S. Titz, T. Kuhlbrodt, J. Corte-Real, J. Kurths, J. A. C. Gallas, and U. Feudel, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, 999 (2004). 10.1142/S0218127404009648
-
(2004)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.14
, pp. 999
-
-
Lind, P.G.1
Titz, S.2
Kuhlbrodt, T.3
Corte-Real, J.4
Kurths, J.5
Gallas, J.A.C.6
Feudel, U.7
-
16
-
-
0002259897
-
-
10.1016/S0167-2789(97)82005-2;
-
R. Coutinho and B. Fernandez, Physica D 108, 60 (1997) 10.1016/S0167-2789(97)82005-2
-
(1997)
Physica D
, vol.108
, pp. 60
-
-
Coutinho, R.1
Fernandez, B.2
-
18
-
-
70349261269
-
-
By Eq. 2, the corresponding orbit coordinates write xst =φ (s-vt) where the profile is defined by φ (z) = σ k=1 ∞ σ n=0 k l n,k θ θ z-n+vk ⌋.
-
By Eq. 2, the corresponding orbit coordinates write xst =φ (s-vt) where the profile is defined by φ (z) = σ k=1 σ n=0 k l n,k θ θ z-n+vk ⌋.
-
-
-
-
19
-
-
0003915004
-
-
For numerical purposes, the TW entropy is defined here as the exponential growth rate of the number PL,v of L -periodic patterns with a given velocity v, i.e., lim supL→ 1 ln PL,v L. This quantity is related to the standard topological entropy based on the number of admissible words, see, e.g., Cambridge University Press, New York
-
For numerical purposes, the TW entropy is defined here as the exponential growth rate of the number PL,v of L -periodic patterns with a given velocity v, i.e., lim supL→ 1 ln PL,v L. This quantity is related to the standard topological entropy based on the number of admissible words, see, e.g., R. Badii and A. Politi, Complexity: Hierarchical Structures and Scaling in Physics (Cambridge University Press, New York, 1997).
-
(1997)
Complexity: Hierarchical Structures and Scaling in Physics
-
-
Badii, R.1
Politi, A.2
-
20
-
-
70349258356
-
-
Because of contraction, any orbit remaining at bounded distance of discontinuities (as for all orbits considered here) is Lyapunov stable and thus structurally stable.
-
Because of contraction, any orbit remaining at bounded distance of discontinuities (as for all orbits considered here) is Lyapunov stable and thus structurally stable.
-
-
-
-
21
-
-
0038973478
-
-
10.1007/BF02179796;
-
B. Fernandez, J. Stat. Phys. 82, 931 (1996) 10.1007/BF02179796
-
(1996)
J. Stat. Phys.
, vol.82
, pp. 931
-
-
Fernandez, B.1
-
22
-
-
0041633305
-
-
10.1016/S0375-9601(97)00178-3
-
M. Johnston, Phys. Lett. A 229, 156 (1997). 10.1016/S0375-9601(97)00178-3
-
(1997)
Phys. Lett. A
, vol.229
, pp. 156
-
-
Johnston, M.1
-
23
-
-
70349261358
-
-
For any T<1- l0 = σ n=1 1 ln, we have T≤ σ n=1 L ln for L large enough. Thus, every fixed-point pattern containing a (finite) 1-block of length L or larger cannot be admissible and the fixed-point entropy must be smaller than ln(2).
-
For any T<1- l0 = σ n=1 1 ln, we have T≤ σ n=1 L ln for L large enough. Thus, every fixed-point pattern containing a (finite) 1-block of length L or larger cannot be admissible and the fixed-point entropy must be smaller than ln(2).
-
-
-
-
24
-
-
70349252278
-
-
For instance fronts with velocity v≠1/2 coexist together with a chaotic set of waves with velocity 1/2 in the central bottom domain D1/2 of Fig. 1.
-
For instance fronts with velocity v≠1/2 coexist together with a chaotic set of waves with velocity 1/2 in the central bottom domain D1/2 of Fig. 1.
-
-
-
|