메뉴 건너뛰기




Volumn 58, Issue 1-2, 2009, Pages 417-429

Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method

Author keywords

Heteroclinic orbit; Homoclinic orbit; Hyperbolic perturbation method; Nonlinear autonomous oscillator

Indexed keywords

HETEROCLINIC ORBIT; HETEROCLINIC SOLUTIONS; HOMOCLINIC; HOMOCLINIC ORBIT; HYPERBOLIC FUNCTIONS; HYPERBOLIC PERTURBATION METHOD; NONLINEAR AUTONOMOUS OSCILLATOR; NUMERICAL SIMULATION; PERIODIC FUNCTION; PERTURBATION METHOD; STRONGLY NONLINEAR;

EID: 70349222886     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-009-9489-9     Document Type: Article
Times cited : (40)

References (34)
  • 2
    • 0003662276 scopus 로고
    • Cambridge University Press New York 0459.34002
    • Mickens, R.E.: Nonlinear Oscillations. Cambridge University Press, New York (1981)
    • (1981) Nonlinear Oscillations
    • Mickens, R.E.1
  • 3
    • 0025887981 scopus 로고
    • A modified Lindstedt-Poincaré method for certain strongly nonlinear oscillators
    • 0755.70021 10.1016/0020-7462(91)90066-3 1103708
    • Y.K. Cheung S.H. Chen S.L. Lau 1991 A modified Lindstedt-Poincaré method for certain strongly nonlinear oscillators J. Non-Linear Mech. 26 3/4 367 378 0755.70021 10.1016/0020-7462(91)90066-3 1103708
    • (1991) J. Non-Linear Mech. , vol.26 , Issue.3-4 , pp. 367-378
    • Cheung, Y.K.1    Chen, S.H.2    Lau, S.L.3
  • 4
    • 0030168604 scopus 로고    scopus 로고
    • A modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system
    • DOI 10.1006/jsvi.1996.0313
    • S.H. Chen Y.K. Cheung 1996 A modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system J. Sound Vib. 193 4 751 762 10.1006/jsvi.1996.0313 1399941 (Pubitemid 126371930)
    • (1996) Journal of Sound and Vibration , vol.193 , Issue.4 , pp. 751-762
    • Chen, S.H.1    Cheung, Y.K.2
  • 5
    • 0022603301 scopus 로고
    • On the multi-scale analysis of strongly non-linear forced oscillators
    • 0583.70016 10.1016/0020-7462(86)90026-0 845161
    • T.D. Burton Z. Rahman 1986 On the multi-scale analysis of strongly non-linear forced oscillators J. Non-Linear Mech. 21 2 135 146 0583.70016 10.1016/0020-7462(86)90026-0 845161
    • (1986) J. Non-Linear Mech. , vol.21 , Issue.2 , pp. 135-146
    • Burton, T.D.1    Rahman, Z.2
  • 6
    • 0018531738 scopus 로고
    • A perturbation method for a set of purely non-linear differential equations
    • 0422.34066 10.1080/00207177908922795 554966
    • J.P. Ottoy 1979 A perturbation method for a set of purely non-linear differential equations Int. J. Control 30 4 587 595 0422.34066 10.1080/00207177908922795 554966
    • (1979) Int. J. Control , vol.30 , Issue.4 , pp. 587-595
    • Ottoy, J.P.1
  • 7
    • 26644444681 scopus 로고
    • Asymptotic analysis of strongly non-linear oscillator
    • 0585.34039 10.1007/BF01895378
    • S.Q. Dai 1985 Asymptotic analysis of strongly non-linear oscillator Appl. Math. Mech. (Engl. Ed.) 6 409 415 0585.34039 10.1007/BF01895378
    • (1985) Appl. Math. Mech. (Engl. Ed.) , vol.6 , pp. 409-415
    • Dai, S.Q.1
  • 8
    • 0014586184 scopus 로고
    • An extension to the method of Kryloff and Bogoliubov
    • 10.1080/00207176908905833
    • P.G.D. Barkham A.C. Souback 1969 An extension to the method of Kryloff and Bogoliubov Int. J. Control 10 337 392 10.1080/00207176908905833
    • (1969) Int. J. Control , vol.10 , pp. 337-392
    • Barkham, P.G.D.1    Souback, A.C.2
  • 9
    • 0024648820 scopus 로고
    • Extension and improvement to the Krylov-Bogoliubov methods using elliptic functions
    • 0691.34029
    • S.B. Yuste J.D. Bejarano 1989 Extension and improvement to the Krylov-Bogoliubov methods using elliptic functions Int. J. Control 49 1127 1141 0691.34029
    • (1989) Int. J. Control , vol.49 , pp. 1127-1141
    • Yuste, S.B.1    Bejarano, J.D.2
  • 10
    • 0025206791 scopus 로고
    • Averaging using elliptic function: Approximation of limit cycles
    • 0699.34032 10.1007/BF01176982 1061843
    • V.T. Coppola R.H. Rand 1990 Averaging using elliptic function: approximation of limit cycles Acta Mech. 81 125 142 0699.34032 10.1007/BF01176982 1061843
    • (1990) Acta Mech. , vol.81 , pp. 125-142
    • Coppola, V.T.1    Rand, R.H.2
  • 11
    • 0028508464 scopus 로고
    • Averaging method for strongly non-linear oscillators with periodic excitations
    • 0813.70014 10.1016/0020-7462(94)90068-X
    • R.V. Roy 1994 Averaging method for strongly non-linear oscillators with periodic excitations J. Non-Linear Mech. 29 737 753 0813.70014 10.1016/0020-7462(94)90068-X
    • (1994) J. Non-Linear Mech. , vol.29 , pp. 737-753
    • Roy, R.V.1
  • 12
    • 0031095817 scopus 로고    scopus 로고
    • An elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators
    • 0881.70015 10.1023/A:1008267817248 1447572
    • S.H. Chen Y.K. Cheung 1997 An elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators Nonlinear Dyn. 12 199 213 0881.70015 10.1023/A:1008267817248 1447572
    • (1997) Nonlinear Dyn. , vol.12 , pp. 199-213
    • Chen, S.H.1    Cheung, Y.K.2
  • 13
    • 0037808065 scopus 로고    scopus 로고
    • Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method
    • 10.1006/jsvi.1999.2399 1730796
    • S.H. Chen X.M. Yang Y.K. Cheung 1999 Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method J. Sound Vib. 227 1109 1118 10.1006/jsvi.1999.2399 1730796
    • (1999) J. Sound Vib. , vol.227 , pp. 1109-1118
    • Chen, S.H.1    Yang, X.M.2    Cheung, Y.K.3
  • 14
    • 2542590842 scopus 로고    scopus 로고
    • A modified elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators
    • 10.1016/S0022-460X(03)00565-0 2061639
    • C.H. Yang S.M. Zhu S.H. Chen 2004 A modified elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators J. Sound Vib. 273 921 932 10.1016/S0022-460X(03)00565-0 2061639
    • (2004) J. Sound Vib. , vol.273 , pp. 921-932
    • Yang, C.H.1    Zhu, S.M.2    Chen, S.H.3
  • 15
    • 0030563949 scopus 로고    scopus 로고
    • An elliptic perturbation method for certain strongly non-linear oscillators
    • DOI 10.1006/jsvi.1996.0197
    • S.H. Chen Y.K. Cheung 1996 An elliptic perturbation method for certain strongly non-linear oscillators J. Sound Vib. 192 453 464 10.1006/jsvi.1996.0197 1391397 (Pubitemid 126368866)
    • (1996) Journal of Sound and Vibration , vol.192 , Issue.2 , pp. 453-463
    • Chen, S.H.1    Cheung, Y.K.2
  • 16
    • 0037808066 scopus 로고    scopus 로고
    • Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method
    • 10.1006/jsvi.1997.1411 1630509
    • S.H. Chen X.M. Yang Y.K. Cheung 1998 Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method J. Sound Vib. 212 771 780 10.1006/jsvi.1997.1411 1630509
    • (1998) J. Sound Vib. , vol.212 , pp. 771-780
    • Chen, S.H.1    Yang, X.M.2    Cheung, Y.K.3
  • 17
    • 0019055509 scopus 로고
    • Study of a non-linear perturbed oscillator
    • 10.1080/00207178008922869
    • J.P. Otty 1980 Study of a non-linear perturbed oscillator Int. J. Control 32 3 475 487 10.1080/00207178008922869
    • (1980) Int. J. Control , vol.32 , Issue.3 , pp. 475-487
    • Otty, J.P.1
  • 18
    • 6344259178 scopus 로고    scopus 로고
    • Periodic solutions of strongly non-linear oscillators by the multiple scales method
    • DOI 10.1006/jsvi.2002.5145
    • F. Lakrad M. Belhaq 2002 Periodic solutions of strongly non-linear oscillators by the multiple scales method J. Sound Vib. 258 677 700 10.1006/jsvi.2002.5145 1952105 (Pubitemid 41100823)
    • (2002) Journal of Sound and Vibration , vol.258 , Issue.4 , pp. 677-700
    • Lakrad, F.1    Belhaq, M.2
  • 19
    • 0028466109 scopus 로고
    • Averaging method using generalized harmonic functions for strongly non-linear oscillators
    • 0945.70534 10.1006/jsvi.1994.1294 1287326
    • Z. Xu Y.K. Cheung 1994 Averaging method using generalized harmonic functions for strongly non-linear oscillators J. Sound Vib. 174 4 563 576 0945.70534 10.1006/jsvi.1994.1294 1287326
    • (1994) J. Sound Vib. , vol.174 , Issue.4 , pp. 563-576
    • Xu, Z.1    Cheung, Y.K.2
  • 20
    • 51249170294 scopus 로고
    • Non-linear time transformation method for strongly nonlinear oscillation systems
    • 0769.34027
    • Z. Xu 1992 Non-linear time transformation method for strongly nonlinear oscillation systems Acta Mech. Sin. (Engl. Ed.) 8 3 279 288 0769.34027
    • (1992) Acta Mech. Sin. (Engl. Ed.) , vol.8 , Issue.3 , pp. 279-288
    • Xu, Z.1
  • 21
    • 26644457315 scopus 로고
    • Asymptotic method for analysis of nonlinear systems with two parameters
    • 0639.34062
    • Z. Xu L. Zhang 1986 Asymptotic method for analysis of nonlinear systems with two parameters Acta Math. Sci. (Engl. Ed.) 6 4 453 462 0639.34062
    • (1986) Acta Math. Sci. (Engl. Ed.) , vol.6 , Issue.4 , pp. 453-462
    • Xu, Z.1    Zhang, L.2
  • 22
    • 0005194232 scopus 로고
    • Non-linear scales method for strongly non-linear oscillators
    • 10.1007/BF00046304 1368566
    • Z. Xu Y.K. Cheung 1995 Non-linear scales method for strongly non-linear oscillators Nonlinear Dyn. 7 285 289 10.1007/BF00046304 1368566
    • (1995) Nonlinear Dyn. , vol.7 , pp. 285-289
    • Xu, Z.1    Cheung, Y.K.2
  • 23
    • 0028378494 scopus 로고
    • Exponentially small splittings of manifolds in a rapidly forced Duffing system, Letter to the editor
    • 0925.70262 10.1006/jsvi.1994.1049 1263177
    • A.F. Vakakis 1994 Exponentially small splittings of manifolds in a rapidly forced Duffing system, Letter to the editor J. Sound Vib. 170 119 129 0925.70262 10.1006/jsvi.1994.1049 1263177
    • (1994) J. Sound Vib. , vol.170 , pp. 119-129
    • Vakakis, A.F.1
  • 24
    • 0032027324 scopus 로고    scopus 로고
    • Analytic Approximation of the homoclinic orbits of the Lorenz system at σ=10, b=8/3 and ρ=13.926
    • 0910.34053 10.1023/A:1008202529152 1613760
    • A.F. Vakakis M.F.A. Azeez 1998 Analytic Approximation of the homoclinic orbits of the Lorenz system at σ=10, b=8/3 and ρ=13.926 Nonlinear Dyn. 15 245 257 0910.34053 10.1023/A:1008202529152 1613760
    • (1998) Nonlinear Dyn. , vol.15 , pp. 245-257
    • Vakakis, A.F.1    Azeez, M.F.A.2
  • 25
    • 0030285349 scopus 로고    scopus 로고
    • Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method
    • 10.1007/BF00120718 1423972
    • Z. Xu H.S.Y. Chan K.W. Chung 1996 Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method Nonlinear Dyn. 11 213 233 10.1007/BF00120718 1423972
    • (1996) Nonlinear Dyn. , vol.11 , pp. 213-233
    • Xu, Z.1    Chan, H.S.Y.2    Chung, K.W.3
  • 26
    • 0031549518 scopus 로고    scopus 로고
    • Stability and bifurcations of limit cycles by the perturbation- incremental method
    • 10.1006/jsvi.1997.1128 1630310
    • H.S.Y. Chan K.W. Chung Z. Xu 1997 Stability and bifurcations of limit cycles by the perturbation-incremental method J. Sound Vib. 206 4 589 604 10.1006/jsvi.1997.1128 1630310
    • (1997) J. Sound Vib. , vol.206 , Issue.4 , pp. 589-604
    • Chan, H.S.Y.1    Chung, K.W.2    Xu, Z.3
  • 27
    • 0033728726 scopus 로고    scopus 로고
    • Perturbation-incremental method for the calculation of semi-stable limit cycles of strongly non-linear oscillators
    • DOI 10.1002/(SICI)1099-0887(200005)16:5<301::AID-CNM337>3.0.CO;2-#
    • S.H. Chen J.K.H. Chan A.Y.T. Leung 2000 A perturbation method for the calculation of semi-stable limit cycles of strongly nonlinear oscillators Commun. Numer. Methods Eng. 16 301 313 0964.65145 10.1002/(SICI)1099- 0887(200005)16:5<301::AID-CNM337>3.0.CO;2-# 1760909 (Pubitemid 30866764)
    • (2000) Communications in Numerical Methods in Engineering , vol.16 , Issue.5 , pp. 301-313
    • Chen, S.H.1    Chan, J.K.H.2    Leung, A.Y.T.3
  • 28
    • 0034326135 scopus 로고    scopus 로고
    • Prediction of homoclinic bifurcation: the elliptic averaging method
    • DOI 10.1016/S0960-0779(99)00144-7
    • M. Belhaq F. Lakrad 2000 Prediction of homoclinic bifurcation: the elliptic averaging method Chaos Solitons Fractals 11 2251 2258 0953.34026 10.1016/S0960-0779(99)00144-7 1772717 (Pubitemid 30904501)
    • (2000) Chaos, solitons and fractals , vol.11 , Issue.14 , pp. 2251-2258
    • Belhaq, M.1    Lakrad, F.2
  • 29
    • 0013027015 scopus 로고    scopus 로고
    • Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincaré method
    • 0967.70019 10.1023/A:1008316010341 1781936
    • M. Belhaq B. Fiedler F. Lakrad 2000 Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincaré method Nonlinear Dyn. 23 67 86 0967.70019 10.1023/A:1008316010341 1781936
    • (2000) Nonlinear Dyn. , vol.23 , pp. 67-86
    • Belhaq, M.1    Fiedler, B.2    Lakrad, F.3
  • 30
    • 0033752515 scopus 로고    scopus 로고
    • Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems
    • DOI 10.1006/jsvi.1999.2669
    • Yu.V. Mikhlin 2000 Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems J. Sound Vib. 230 5 971 983 10.1006/jsvi.1999.2669 1751690 (Pubitemid 30856466)
    • (2000) Journal of Sound and Vibration , vol.230 , Issue.5 , pp. 971-983
    • Mikhlin, Yu.V.1
  • 31
    • 0037332901 scopus 로고    scopus 로고
    • Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions
    • DOI 10.1016/S0960-0779(02)00404-6, PII S0960077902004046
    • Yu.V. Mikhlin G.V. Manucharyan 2003 Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions Chaos Solitons Fractals 16 299 309 1056.70011 10.1016/S0960-0779(02) 00404-6 1949477 (Pubitemid 35412183)
    • (2003) Chaos, Solitons and Fractals , vol.16 , Issue.2 , pp. 299-309
    • Mikhlin, Yu.V.1    Manucharyan, G.V.2
  • 32
    • 61749088860 scopus 로고    scopus 로고
    • A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators
    • 10.1016/j.jsv.2008.11.015
    • S.H. Chen Y.Y. Chen K.Y. Sze 2009 A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators J. Sound Vib. 322 1-2 381 392 10.1016/j.jsv.2008.11.015
    • (2009) J. Sound Vib. , vol.322 , Issue.12 , pp. 381-392
    • Chen, S.H.1    Chen, Y.Y.2    Sze, K.Y.3
  • 33
    • 0004245694 scopus 로고
    • M. Abramowitz I.A. Stegun (eds). Dover New York 0543.33001
    • Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)
    • (1972) Handbook of Mathematical Functions
  • 34
    • 0022739178 scopus 로고
    • On infinite-period bifurcations with an application to roll waves
    • 0588.76024 10.1007/BF01302938 853213
    • J.H. Merkin D.J. Needham 1986 On infinite-period bifurcations with an application to roll waves Acta Mech. 60 1 16 0588.76024 10.1007/BF01302938 853213
    • (1986) Acta Mech. , vol.60 , pp. 1-16
    • Merkin, J.H.1    Needham, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.