-
2
-
-
0003662276
-
-
Cambridge University Press New York 0459.34002
-
Mickens, R.E.: Nonlinear Oscillations. Cambridge University Press, New York (1981)
-
(1981)
Nonlinear Oscillations
-
-
Mickens, R.E.1
-
3
-
-
0025887981
-
A modified Lindstedt-Poincaré method for certain strongly nonlinear oscillators
-
0755.70021 10.1016/0020-7462(91)90066-3 1103708
-
Y.K. Cheung S.H. Chen S.L. Lau 1991 A modified Lindstedt-Poincaré method for certain strongly nonlinear oscillators J. Non-Linear Mech. 26 3/4 367 378 0755.70021 10.1016/0020-7462(91)90066-3 1103708
-
(1991)
J. Non-Linear Mech.
, vol.26
, Issue.3-4
, pp. 367-378
-
-
Cheung, Y.K.1
Chen, S.H.2
Lau, S.L.3
-
4
-
-
0030168604
-
A modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system
-
DOI 10.1006/jsvi.1996.0313
-
S.H. Chen Y.K. Cheung 1996 A modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system J. Sound Vib. 193 4 751 762 10.1006/jsvi.1996.0313 1399941 (Pubitemid 126371930)
-
(1996)
Journal of Sound and Vibration
, vol.193
, Issue.4
, pp. 751-762
-
-
Chen, S.H.1
Cheung, Y.K.2
-
5
-
-
0022603301
-
On the multi-scale analysis of strongly non-linear forced oscillators
-
0583.70016 10.1016/0020-7462(86)90026-0 845161
-
T.D. Burton Z. Rahman 1986 On the multi-scale analysis of strongly non-linear forced oscillators J. Non-Linear Mech. 21 2 135 146 0583.70016 10.1016/0020-7462(86)90026-0 845161
-
(1986)
J. Non-Linear Mech.
, vol.21
, Issue.2
, pp. 135-146
-
-
Burton, T.D.1
Rahman, Z.2
-
6
-
-
0018531738
-
A perturbation method for a set of purely non-linear differential equations
-
0422.34066 10.1080/00207177908922795 554966
-
J.P. Ottoy 1979 A perturbation method for a set of purely non-linear differential equations Int. J. Control 30 4 587 595 0422.34066 10.1080/00207177908922795 554966
-
(1979)
Int. J. Control
, vol.30
, Issue.4
, pp. 587-595
-
-
Ottoy, J.P.1
-
7
-
-
26644444681
-
Asymptotic analysis of strongly non-linear oscillator
-
0585.34039 10.1007/BF01895378
-
S.Q. Dai 1985 Asymptotic analysis of strongly non-linear oscillator Appl. Math. Mech. (Engl. Ed.) 6 409 415 0585.34039 10.1007/BF01895378
-
(1985)
Appl. Math. Mech. (Engl. Ed.)
, vol.6
, pp. 409-415
-
-
Dai, S.Q.1
-
8
-
-
0014586184
-
An extension to the method of Kryloff and Bogoliubov
-
10.1080/00207176908905833
-
P.G.D. Barkham A.C. Souback 1969 An extension to the method of Kryloff and Bogoliubov Int. J. Control 10 337 392 10.1080/00207176908905833
-
(1969)
Int. J. Control
, vol.10
, pp. 337-392
-
-
Barkham, P.G.D.1
Souback, A.C.2
-
9
-
-
0024648820
-
Extension and improvement to the Krylov-Bogoliubov methods using elliptic functions
-
0691.34029
-
S.B. Yuste J.D. Bejarano 1989 Extension and improvement to the Krylov-Bogoliubov methods using elliptic functions Int. J. Control 49 1127 1141 0691.34029
-
(1989)
Int. J. Control
, vol.49
, pp. 1127-1141
-
-
Yuste, S.B.1
Bejarano, J.D.2
-
10
-
-
0025206791
-
Averaging using elliptic function: Approximation of limit cycles
-
0699.34032 10.1007/BF01176982 1061843
-
V.T. Coppola R.H. Rand 1990 Averaging using elliptic function: approximation of limit cycles Acta Mech. 81 125 142 0699.34032 10.1007/BF01176982 1061843
-
(1990)
Acta Mech.
, vol.81
, pp. 125-142
-
-
Coppola, V.T.1
Rand, R.H.2
-
11
-
-
0028508464
-
Averaging method for strongly non-linear oscillators with periodic excitations
-
0813.70014 10.1016/0020-7462(94)90068-X
-
R.V. Roy 1994 Averaging method for strongly non-linear oscillators with periodic excitations J. Non-Linear Mech. 29 737 753 0813.70014 10.1016/0020-7462(94)90068-X
-
(1994)
J. Non-Linear Mech.
, vol.29
, pp. 737-753
-
-
Roy, R.V.1
-
12
-
-
0031095817
-
An elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators
-
0881.70015 10.1023/A:1008267817248 1447572
-
S.H. Chen Y.K. Cheung 1997 An elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators Nonlinear Dyn. 12 199 213 0881.70015 10.1023/A:1008267817248 1447572
-
(1997)
Nonlinear Dyn.
, vol.12
, pp. 199-213
-
-
Chen, S.H.1
Cheung, Y.K.2
-
13
-
-
0037808065
-
Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method
-
10.1006/jsvi.1999.2399 1730796
-
S.H. Chen X.M. Yang Y.K. Cheung 1999 Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method J. Sound Vib. 227 1109 1118 10.1006/jsvi.1999.2399 1730796
-
(1999)
J. Sound Vib.
, vol.227
, pp. 1109-1118
-
-
Chen, S.H.1
Yang, X.M.2
Cheung, Y.K.3
-
14
-
-
2542590842
-
A modified elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators
-
10.1016/S0022-460X(03)00565-0 2061639
-
C.H. Yang S.M. Zhu S.H. Chen 2004 A modified elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators J. Sound Vib. 273 921 932 10.1016/S0022-460X(03)00565-0 2061639
-
(2004)
J. Sound Vib.
, vol.273
, pp. 921-932
-
-
Yang, C.H.1
Zhu, S.M.2
Chen, S.H.3
-
15
-
-
0030563949
-
An elliptic perturbation method for certain strongly non-linear oscillators
-
DOI 10.1006/jsvi.1996.0197
-
S.H. Chen Y.K. Cheung 1996 An elliptic perturbation method for certain strongly non-linear oscillators J. Sound Vib. 192 453 464 10.1006/jsvi.1996.0197 1391397 (Pubitemid 126368866)
-
(1996)
Journal of Sound and Vibration
, vol.192
, Issue.2
, pp. 453-463
-
-
Chen, S.H.1
Cheung, Y.K.2
-
16
-
-
0037808066
-
Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method
-
10.1006/jsvi.1997.1411 1630509
-
S.H. Chen X.M. Yang Y.K. Cheung 1998 Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method J. Sound Vib. 212 771 780 10.1006/jsvi.1997.1411 1630509
-
(1998)
J. Sound Vib.
, vol.212
, pp. 771-780
-
-
Chen, S.H.1
Yang, X.M.2
Cheung, Y.K.3
-
17
-
-
0019055509
-
Study of a non-linear perturbed oscillator
-
10.1080/00207178008922869
-
J.P. Otty 1980 Study of a non-linear perturbed oscillator Int. J. Control 32 3 475 487 10.1080/00207178008922869
-
(1980)
Int. J. Control
, vol.32
, Issue.3
, pp. 475-487
-
-
Otty, J.P.1
-
18
-
-
6344259178
-
Periodic solutions of strongly non-linear oscillators by the multiple scales method
-
DOI 10.1006/jsvi.2002.5145
-
F. Lakrad M. Belhaq 2002 Periodic solutions of strongly non-linear oscillators by the multiple scales method J. Sound Vib. 258 677 700 10.1006/jsvi.2002.5145 1952105 (Pubitemid 41100823)
-
(2002)
Journal of Sound and Vibration
, vol.258
, Issue.4
, pp. 677-700
-
-
Lakrad, F.1
Belhaq, M.2
-
19
-
-
0028466109
-
Averaging method using generalized harmonic functions for strongly non-linear oscillators
-
0945.70534 10.1006/jsvi.1994.1294 1287326
-
Z. Xu Y.K. Cheung 1994 Averaging method using generalized harmonic functions for strongly non-linear oscillators J. Sound Vib. 174 4 563 576 0945.70534 10.1006/jsvi.1994.1294 1287326
-
(1994)
J. Sound Vib.
, vol.174
, Issue.4
, pp. 563-576
-
-
Xu, Z.1
Cheung, Y.K.2
-
20
-
-
51249170294
-
Non-linear time transformation method for strongly nonlinear oscillation systems
-
0769.34027
-
Z. Xu 1992 Non-linear time transformation method for strongly nonlinear oscillation systems Acta Mech. Sin. (Engl. Ed.) 8 3 279 288 0769.34027
-
(1992)
Acta Mech. Sin. (Engl. Ed.)
, vol.8
, Issue.3
, pp. 279-288
-
-
Xu, Z.1
-
21
-
-
26644457315
-
Asymptotic method for analysis of nonlinear systems with two parameters
-
0639.34062
-
Z. Xu L. Zhang 1986 Asymptotic method for analysis of nonlinear systems with two parameters Acta Math. Sci. (Engl. Ed.) 6 4 453 462 0639.34062
-
(1986)
Acta Math. Sci. (Engl. Ed.)
, vol.6
, Issue.4
, pp. 453-462
-
-
Xu, Z.1
Zhang, L.2
-
22
-
-
0005194232
-
Non-linear scales method for strongly non-linear oscillators
-
10.1007/BF00046304 1368566
-
Z. Xu Y.K. Cheung 1995 Non-linear scales method for strongly non-linear oscillators Nonlinear Dyn. 7 285 289 10.1007/BF00046304 1368566
-
(1995)
Nonlinear Dyn.
, vol.7
, pp. 285-289
-
-
Xu, Z.1
Cheung, Y.K.2
-
23
-
-
0028378494
-
Exponentially small splittings of manifolds in a rapidly forced Duffing system, Letter to the editor
-
0925.70262 10.1006/jsvi.1994.1049 1263177
-
A.F. Vakakis 1994 Exponentially small splittings of manifolds in a rapidly forced Duffing system, Letter to the editor J. Sound Vib. 170 119 129 0925.70262 10.1006/jsvi.1994.1049 1263177
-
(1994)
J. Sound Vib.
, vol.170
, pp. 119-129
-
-
Vakakis, A.F.1
-
24
-
-
0032027324
-
Analytic Approximation of the homoclinic orbits of the Lorenz system at σ=10, b=8/3 and ρ=13.926
-
0910.34053 10.1023/A:1008202529152 1613760
-
A.F. Vakakis M.F.A. Azeez 1998 Analytic Approximation of the homoclinic orbits of the Lorenz system at σ=10, b=8/3 and ρ=13.926 Nonlinear Dyn. 15 245 257 0910.34053 10.1023/A:1008202529152 1613760
-
(1998)
Nonlinear Dyn.
, vol.15
, pp. 245-257
-
-
Vakakis, A.F.1
Azeez, M.F.A.2
-
25
-
-
0030285349
-
Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method
-
10.1007/BF00120718 1423972
-
Z. Xu H.S.Y. Chan K.W. Chung 1996 Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method Nonlinear Dyn. 11 213 233 10.1007/BF00120718 1423972
-
(1996)
Nonlinear Dyn.
, vol.11
, pp. 213-233
-
-
Xu, Z.1
Chan, H.S.Y.2
Chung, K.W.3
-
26
-
-
0031549518
-
Stability and bifurcations of limit cycles by the perturbation- incremental method
-
10.1006/jsvi.1997.1128 1630310
-
H.S.Y. Chan K.W. Chung Z. Xu 1997 Stability and bifurcations of limit cycles by the perturbation-incremental method J. Sound Vib. 206 4 589 604 10.1006/jsvi.1997.1128 1630310
-
(1997)
J. Sound Vib.
, vol.206
, Issue.4
, pp. 589-604
-
-
Chan, H.S.Y.1
Chung, K.W.2
Xu, Z.3
-
27
-
-
0033728726
-
Perturbation-incremental method for the calculation of semi-stable limit cycles of strongly non-linear oscillators
-
DOI 10.1002/(SICI)1099-0887(200005)16:5<301::AID-CNM337>3.0.CO;2-#
-
S.H. Chen J.K.H. Chan A.Y.T. Leung 2000 A perturbation method for the calculation of semi-stable limit cycles of strongly nonlinear oscillators Commun. Numer. Methods Eng. 16 301 313 0964.65145 10.1002/(SICI)1099- 0887(200005)16:5<301::AID-CNM337>3.0.CO;2-# 1760909 (Pubitemid 30866764)
-
(2000)
Communications in Numerical Methods in Engineering
, vol.16
, Issue.5
, pp. 301-313
-
-
Chen, S.H.1
Chan, J.K.H.2
Leung, A.Y.T.3
-
28
-
-
0034326135
-
Prediction of homoclinic bifurcation: the elliptic averaging method
-
DOI 10.1016/S0960-0779(99)00144-7
-
M. Belhaq F. Lakrad 2000 Prediction of homoclinic bifurcation: the elliptic averaging method Chaos Solitons Fractals 11 2251 2258 0953.34026 10.1016/S0960-0779(99)00144-7 1772717 (Pubitemid 30904501)
-
(2000)
Chaos, solitons and fractals
, vol.11
, Issue.14
, pp. 2251-2258
-
-
Belhaq, M.1
Lakrad, F.2
-
29
-
-
0013027015
-
Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincaré method
-
0967.70019 10.1023/A:1008316010341 1781936
-
M. Belhaq B. Fiedler F. Lakrad 2000 Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincaré method Nonlinear Dyn. 23 67 86 0967.70019 10.1023/A:1008316010341 1781936
-
(2000)
Nonlinear Dyn.
, vol.23
, pp. 67-86
-
-
Belhaq, M.1
Fiedler, B.2
Lakrad, F.3
-
30
-
-
0033752515
-
Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems
-
DOI 10.1006/jsvi.1999.2669
-
Yu.V. Mikhlin 2000 Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems J. Sound Vib. 230 5 971 983 10.1006/jsvi.1999.2669 1751690 (Pubitemid 30856466)
-
(2000)
Journal of Sound and Vibration
, vol.230
, Issue.5
, pp. 971-983
-
-
Mikhlin, Yu.V.1
-
31
-
-
0037332901
-
Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions
-
DOI 10.1016/S0960-0779(02)00404-6, PII S0960077902004046
-
Yu.V. Mikhlin G.V. Manucharyan 2003 Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions Chaos Solitons Fractals 16 299 309 1056.70011 10.1016/S0960-0779(02) 00404-6 1949477 (Pubitemid 35412183)
-
(2003)
Chaos, Solitons and Fractals
, vol.16
, Issue.2
, pp. 299-309
-
-
Mikhlin, Yu.V.1
Manucharyan, G.V.2
-
32
-
-
61749088860
-
A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators
-
10.1016/j.jsv.2008.11.015
-
S.H. Chen Y.Y. Chen K.Y. Sze 2009 A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators J. Sound Vib. 322 1-2 381 392 10.1016/j.jsv.2008.11.015
-
(2009)
J. Sound Vib.
, vol.322
, Issue.12
, pp. 381-392
-
-
Chen, S.H.1
Chen, Y.Y.2
Sze, K.Y.3
-
33
-
-
0004245694
-
-
M. Abramowitz I.A. Stegun (eds). Dover New York 0543.33001
-
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)
-
(1972)
Handbook of Mathematical Functions
-
-
-
34
-
-
0022739178
-
On infinite-period bifurcations with an application to roll waves
-
0588.76024 10.1007/BF01302938 853213
-
J.H. Merkin D.J. Needham 1986 On infinite-period bifurcations with an application to roll waves Acta Mech. 60 1 16 0588.76024 10.1007/BF01302938 853213
-
(1986)
Acta Mech.
, vol.60
, pp. 1-16
-
-
Merkin, J.H.1
Needham, D.J.2
|