-
3
-
-
33645887246
-
Support Vector Machines using GMM Supervectors for Speaker Verification
-
W. M. Campbell, D.E. Sturim, and D. A. Reynolds, "Support Vector Machines using GMM Supervectors for Speaker Verification," IEEE Signal Processing Letters, vol. 13, no. 5, pp. 308-311, 2006.
-
(2006)
IEEE Signal Processing Letters
, vol.13
, Issue.5
, pp. 308-311
-
-
Campbell, W.M.1
Sturim, D.E.2
Reynolds, D.A.3
-
4
-
-
33745216683
-
MLLR Transforms as Features in Speaker Recognition
-
September
-
A. Stolcke, L. Ferrer, S. Kajarekar, E. Shriberg, and A. Venkataraman, "MLLR Transforms as Features in Speaker Recognition," Proceedings of Eurospeech, pp. 2425-2428, September 2005.
-
(2005)
Proceedings of Eurospeech
, pp. 2425-2428
-
-
Stolcke, A.1
Ferrer, L.2
Kajarekar, S.3
Shriberg, E.4
Venkataraman, A.5
-
6
-
-
34547503802
-
Constrained MLLR for Speaker Recognition
-
April
-
M. Ferràs, C. C. Leung, C. Barras, and J-L Gauvain, "Constrained MLLR for Speaker Recognition," Proceedings of IEEE Conference on Audio Speech and Signal Processing, April 2007.
-
(2007)
Proceedings of IEEE Conference on Audio Speech and Signal Processing
-
-
Ferràs, M.1
Leung, C.C.2
Barras, C.3
Gauvain, J.-L.4
-
7
-
-
85084017585
-
MLLR Techniques for Speaker Recognition
-
January
-
M. Ferràs, C.C. Leung, C. Barras, and J.L. Gauvain, "MLLR Techniques for Speaker Recognition," in Proceedings of IEEE Speaker Odyssey, January 2008.
-
(2008)
Proceedings of IEEE Speaker Odyssey
-
-
Ferràs, M.1
Leung, C.C.2
Barras, C.3
Gauvain, J.L.4
-
9
-
-
0029375590
-
Speaker Adaptation Using Constrained Estimation of Gaussian Mixtures
-
September
-
V. V. Digalakis, D. Rtischev, and L. G. Neumeyer, "Speaker Adaptation Using Constrained Estimation of Gaussian Mixtures," IEEE Transactions on Speech and Audio Processing, vol. 3, pp. 357-366, September 1995.
-
(1995)
IEEE Transactions on Speech and Audio Processing
, vol.3
, pp. 357-366
-
-
Digalakis, V.V.1
Rtischev, D.2
Neumeyer, L.G.3
-
10
-
-
0029288633
-
Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models
-
C. J. Leggetter and P. C. Woodland, "Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models," Computer Speech and Language, vol. 9, pp. 171-185, 1995.
-
(1995)
Computer Speech and Language
, vol.9
, pp. 171-185
-
-
Leggetter, C.J.1
Woodland, P.C.2
-
11
-
-
84885875459
-
Fast incremental adaptation using maximum likelihood regression and stochastic gradient descent
-
February
-
S. V. Balakrishnan, "Fast incremental adaptation using maximum likelihood regression and stochastic gradient descent," in Proceedings of Eurospeech, February 2003.
-
(2003)
Proceedings of Eurospeech
-
-
Balakrishnan, S.V.1
-
12
-
-
0003778679
-
Lattice-based unsupervised mllr for speaker adaptation
-
M. Padmanabhan, G. Saon, and G. Zweig, "Lattice-based unsupervised mllr for speaker adaptation," in Proceedings of the ISCA ITRW ASR2000, 2000, pp. 128-131.
-
(2000)
Proceedings of the ISCA ITRW ASR2000
, pp. 128-131
-
-
Padmanabhan, M.1
Saon, G.2
Zweig, G.3
-
14
-
-
70349213909
-
The 2004 BBN/LIMSI 20xRT English Conversational Telephone Speech Recognition System
-
R. Prasad, S. Matsoukas, C.-L. Kao, J. Ma, D.-X. Xu, T. Colthrust, O. Kimball, R. Schwartz, J.-L. Gauvain, L. Lamel, H. Schwenk, G. Adda, and F. Lefevre, "The 2004 BBN/LIMSI 20xRT English Conversational Telephone Speech Recognition System," Proceedings of Interspeech, 2005.
-
(2005)
Proceedings of Interspeech
-
-
Prasad, R.1
Matsoukas, S.2
Kao, C.-L.3
Ma, J.4
Xu, D.-X.5
Colthrust, T.6
Kimball, O.7
Schwartz, R.8
Gauvain, J.-L.9
Lamel, L.10
Schwenk, H.11
Adda, G.12
Lefevre, F.13
-
15
-
-
56149126578
-
A Straightforward and Efficient Implementation of the Factor Analysis Model for Speaker Verification
-
August
-
D. Matrouf, N. Scheffer, B. Fauve, and J.F. Bonastre, "A Straightforward and Efficient Implementation of the Factor Analysis Model for Speaker Verification," in Proceedings of INTERSPEECH, August 2007.
-
(2007)
Proceedings of INTERSPEECH
-
-
Matrouf, D.1
Scheffer, N.2
Fauve, B.3
Bonastre, J.F.4
|