메뉴 건너뛰기




Volumn , Issue , 2009, Pages 3013-3016

Analyzing least squares and Kalman filtered compressed sensing

Author keywords

Compressed sensing; Kalman filter; Least squares

Indexed keywords

COMPRESSED SENSING; CURRENT SIGNAL; KALMAN-FILTERING; LEAST SQUARE; LEAST SQUARES; LEAST SQUARES ESTIMATION; NON-ZERO COEFFICIENTS; REDUCED ORDER; SPARSE SIGNALS; SPARSITY PATTERNS; TIME SEQUENCES; TIME VARYING;

EID: 70349216433     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2009.4960258     Document Type: Conference Paper
Times cited : (30)

References (8)
  • 2
    • 47849114121 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • E. Candes and T. Tao, "The dantzig selector: statistical estimation when p is much larger than n," Annals of Statistics, 2006.
    • (2006) Annals of Statistics
    • Candes, E.1    Tao, T.2
  • 7
    • 33748575920 scopus 로고    scopus 로고
    • Signal reconstruction from noisy random projections
    • Sept
    • J. Haupt and R. Nowak, "Signal reconstruction from noisy random projections," IEEE Trans. Info. Th., Sept. 2006.
    • (2006) IEEE Trans. Info. Th
    • Haupt, J.1    Nowak, R.2
  • 8
    • 70349221652 scopus 로고    scopus 로고
    • N. Vaswani, Analyzing least squares and kalman filtered compressed sensing, in long version, available at http://www.ece.iastate.edu/ ~namrata/AnalyzeKFCS.pdf, 2008.
    • N. Vaswani, "Analyzing least squares and kalman filtered compressed sensing," in long version, available at http://www.ece.iastate.edu/ ~namrata/AnalyzeKFCS.pdf, 2008.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.