메뉴 건너뛰기




Volumn , Issue , 2009, Pages 3025-3028

Strong thresholds for ℓ2/ℓ1-optimization in block-sparse compressed sensing

Author keywords

Block sparse; Compressed sensing; L1 optimization

Indexed keywords

BLOCK-SPARSE; COMPRESSED SENSING; L1-OPTIMIZATION; LOWER BOUNDS; SYSTEM OF LINEAR EQUATIONS; UNDER-DETERMINED;

EID: 70349205453     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2009.4960261     Document Type: Conference Paper
Times cited : (6)

References (30)
  • 1
    • 70349219995 scopus 로고    scopus 로고
    • M. Akcakaya and V. Tarokh. Performance bounds on sparse representations using redundant frames. 2007. available online at arXiv:cs/0703045.
    • M. Akcakaya and V. Tarokh. Performance bounds on sparse representations using redundant frames. 2007. available online at arXiv:cs/0703045.
  • 6
    • 33947142837 scopus 로고    scopus 로고
    • Theoretical results on sparse representations of multiplemeasurement vectors
    • Dec
    • J. Chen and X. Huo. Theoretical results on sparse representations of multiplemeasurement vectors. IEEE Trans. on Signal Processing, Dec 2006.
    • (2006) IEEE Trans. on Signal Processing
    • Chen, J.1    Huo, X.2
  • 10
    • 33646479497 scopus 로고    scopus 로고
    • High-dimensional centrally symmetric polytopes with neighborlines proportional to dimension
    • D. Donoho. High-dimensional centrally symmetric polytopes with neighborlines proportional to dimension. Disc. Comput. Geometry, 35:617-652, 2006.
    • (2006) Disc. Comput. Geometry , vol.35 , pp. 617-652
    • Donoho, D.1
  • 11
    • 22144488449 scopus 로고    scopus 로고
    • Sparse nonnegative solutions of underdetermined linear equations by linear programming
    • D. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. National Academy of Sciences, 102(27):9446-9451, 2005.
    • (2005) Proc. National Academy of Sciences , vol.102 , Issue.27 , pp. 9446-9451
    • Donoho, D.1    Tanner, J.2
  • 12
    • 0035504028 scopus 로고    scopus 로고
    • Uncertainty principles and ideal atomic decompositions
    • November
    • D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decompositions. IEEE Trans. Inform. Theory, 47(7):2845-2862, November 2001.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , Issue.7 , pp. 2845-2862
    • Donoho, D.L.1    Huo, X.2
  • 16
    • 70349218824 scopus 로고
    • Geometric Aspect of of functional analysis, Isr. Semin. 1986-87, Lect. Notes Math
    • 1317
    • Y. Gordon. On Milman's inequality and random subspaces which escape through a mesh in Rn. Geometric Aspect of of functional analysis, Isr. Semin. 1986-87, Lect. Notes Math, 1317, 1988.
    • (1988)
    • Gordon, Y.1
  • 17
    • 0347968052 scopus 로고    scopus 로고
    • Sparse representations in unions of bases
    • December
    • R. Gribonval and M. Nielsen. Sparse representations in unions of bases. IEEE Trans. Inform. Theory, 49(12):3320-3325, December 2003.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , Issue.12 , pp. 3320-3325
    • Gribonval, R.1    Nielsen, M.2
  • 20
    • 70349202939 scopus 로고    scopus 로고
    • Explicit measurements with almost optimal thresholds for compressed sensing
    • Mar-Apr
    • F. Parvaresh and B. Hassibi. Explicit measurements with almost optimal thresholds for compressed sensing. IEEE ICASSP, Mar-Apr 2008.
    • (2008) IEEE ICASSP
    • Parvaresh, F.1    Hassibi, B.2
  • 21
    • 0001357908 scopus 로고
    • Probabilistic methods in the geometry of banach spaces
    • G. Pisier. Probabilistic methods in the geometry of banach spaces. Springer Lecture Notes, 1206, 1986.
    • (1986) Springer Lecture Notes , vol.1206
    • Pisier, G.1
  • 23
    • 85032751389 scopus 로고    scopus 로고
    • Imaging via compressive sampling
    • J. Romberg. Imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2):14-20, 2008.
    • (2008) IEEE Signal Processing Magazine , vol.25 , Issue.2 , pp. 14-20
    • Romberg, J.1
  • 24
    • 52349092455 scopus 로고    scopus 로고
    • On sparse reconstruction from Fourier and Gaussian measurements
    • M. Rudelson and R. Vershynin. On sparse reconstruction from Fourier and Gaussian measurements. Comm. on Pure and Applied Math., 61(8), 2007.
    • (2007) Comm. on Pure and Applied Math , vol.61 , Issue.8
    • Rudelson, M.1    Vershynin, R.2
  • 25
    • 70349215600 scopus 로고    scopus 로고
    • On the reconstruction of block-sparse signals with an optimal number of measurements
    • avaiable on arxiv
    • M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of block-sparse signals with an optimal number of measurements. submitted to IEEE Trans. on Signal Processing, 2008. avaiable on arxiv.
    • (2008) submitted to IEEE Trans. on Signal Processing
    • Stojnic, M.1    Parvaresh, F.2    Hassibi, B.3
  • 27
    • 18144398696 scopus 로고    scopus 로고
    • A remark on simultaneous greedy approximation
    • V.N. Temlyakov. A remark on simultaneous greedy approximation. East J. Approx., 100, 2004.
    • (2004) East J. Approx , vol.100
    • Temlyakov, V.N.1
  • 28
    • 68249145546 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. part i: Greedy pursuit
    • Aug
    • J. Tropp, A. C. Gilbert, and M. Strauss. Algorithms for simultaneous sparse approximation. part i: Greedy pursuit. Signal Processing, Aug 2005.
    • (2005) Signal Processing
    • Tropp, J.1    Gilbert, A.C.2    Strauss, M.3
  • 30
    • 70349207682 scopus 로고    scopus 로고
    • Y. Zhang. When is missing data recoverable. available online at http://www.dsp.ece.rice.edu/cs/.
    • Y. Zhang. When is missing data recoverable. available online at http://www.dsp.ece.rice.edu/cs/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.