메뉴 건너뛰기




Volumn 22, Issue 11, 2009, Pages 1700-1704

On the invariant mean and statistical convergence

Author keywords

convergence; density; Almost convergence; Banach limit; Invariant mean; Statistical convergence

Indexed keywords

ALMOST CONVERGENCE; BANACH LIMIT; INVARIANT MEAN; LORENTZ; MATRIX METHODS; STATISTICAL CONVERGENCE; SUMMABILITY;

EID: 70349193020     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2009.06.005     Document Type: Article
Times cited : (52)

References (17)
  • 2
    • 34250593205 scopus 로고
    • A contribution to theory of divergent sequences
    • Lorentz G.G. A contribution to theory of divergent sequences. Acta Math. 80 (1948) 167-190
    • (1948) Acta Math. , vol.80 , pp. 167-190
    • Lorentz, G.G.1
  • 3
    • 0001820522 scopus 로고
    • Invariant means and invariant matrix methods of summability
    • Raimi R.A. Invariant means and invariant matrix methods of summability. Duke Math. J 30 (1963) 81-94
    • (1963) Duke Math. J , vol.30 , pp. 81-94
    • Raimi, R.A.1
  • 5
    • 23044534968 scopus 로고    scopus 로고
    • On almost convergent and statistically convergent subsequences
    • Miller H.I., and Orhan C. On almost convergent and statistically convergent subsequences. Acta Math. Hung. 93 (2001) 135-151
    • (2001) Acta Math. Hung. , vol.93 , pp. 135-151
    • Miller, H.I.1    Orhan, C.2
  • 6
    • 84968517860 scopus 로고
    • Infinite matrices and invariant means
    • Schaefer P. Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36 (1972) 104-110
    • (1972) Proc. Amer. Math. Soc. , vol.36 , pp. 104-110
    • Schaefer, P.1
  • 7
    • 0002281612 scopus 로고
    • On some new invariant matrix methods of summability
    • Mursaleen M. On some new invariant matrix methods of summability. Quart. J. Math. Oxford 34 (1983) 77-86
    • (1983) Quart. J. Math. Oxford , vol.34 , pp. 77-86
    • Mursaleen, M.1
  • 8
    • 0000409654 scopus 로고
    • Matrix transformations between some new sequence spaces
    • Mursaleen M. Matrix transformations between some new sequence spaces. Houston J. Math. 9 4 (1983) 505-509
    • (1983) Houston J. Math. , vol.9 , Issue.4 , pp. 505-509
    • Mursaleen, M.1
  • 9
    • 58049190520 scopus 로고    scopus 로고
    • On statistical A-summability
    • Edely O.H.H., and Mursaleen M. On statistical A-summability. Math. Comput. Model. 49 3-4 (2009) 672-680
    • (2009) Math. Comput. Model. , vol.49 , Issue.3-4 , pp. 672-680
    • Edely, O.H.H.1    Mursaleen, M.2
  • 10
    • 0000243940 scopus 로고
    • Sur la convergence statistique
    • Fast H. Sur la convergence statistique. Colloq. Math. 2 (1951) 241-244
    • (1951) Colloq. Math. , vol.2 , pp. 241-244
    • Fast, H.1
  • 11
    • 0001613569 scopus 로고
    • On statistically convergent sequences of real numbers
    • Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980) 139-150
    • (1980) Math. Slovaca , vol.30 , pp. 139-150
    • Šalát, T.1
  • 12
    • 33745459449 scopus 로고    scopus 로고
    • σ-convergence and σ-core of double sequences
    • Çakan C., Altay B., and Mursaleen M. σ-convergence and σ-core of double sequences. Appl. Math. Lett. 19 (2006) 1122-1128
    • (2006) Appl. Math. Lett. , vol.19 , pp. 1122-1128
    • Çakan, C.1    Altay, B.2    Mursaleen, M.3
  • 13
    • 0042880027 scopus 로고    scopus 로고
    • Statistical convergence of multiple sequences
    • Moricz F. Statistical convergence of multiple sequences. Arch. Math. 81 (2003) 82-89
    • (2003) Arch. Math. , vol.81 , pp. 82-89
    • Moricz, F.1
  • 14
    • 0346273049 scopus 로고    scopus 로고
    • Statistical convergence of double sequences
    • Mursaleen M., and Edely O.H.H. Statistical convergence of double sequences. J. Math. Anal. Appl. 288 (2003) 223-231
    • (2003) J. Math. Anal. Appl. , vol.288 , pp. 223-231
    • Mursaleen, M.1    Edely, O.H.H.2
  • 17
    • 0036869641 scopus 로고    scopus 로고
    • Tauberian conditions under which statistical convergence follows from statistical summability (C, 1)
    • Moricz F. Tauberian conditions under which statistical convergence follows from statistical summability (C, 1). J. Math. Anal. Appl. 275 (2002) 277-287
    • (2002) J. Math. Anal. Appl. , vol.275 , pp. 277-287
    • Moricz, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.