-
4
-
-
0003894270
-
-
2nd ed. (Lawrence Berkeley National Laboratory, Berkeley
-
A. C. Thompson, X-Ray Data Booklet, 2nd ed. (Lawrence Berkeley National Laboratory, Berkeley, 2001).
-
(2001)
X-Ray Data Booklet
-
-
Thompson, A.C.1
-
5
-
-
3943077982
-
-
10.1103/PhysRevA.42.6507
-
H. P. Saha, Phys. Rev. A 42, 6507 (1990). 10.1103/PhysRevA.42.6507
-
(1990)
Phys. Rev. A
, vol.42
, pp. 6507
-
-
Saha, H.P.1
-
6
-
-
0000710328
-
-
edited by W. Mehlhorn Springer, Berlin
-
T. Aberg and G. Howat, in Handbuch der Physik, edited by, W. Mehlhorn, (Springer, Berlin, 1982), Vol. 31, pp. 469-619.
-
(1982)
Handbuch der Physik
, vol.31
, pp. 469-619
-
-
Aberg, T.1
Howat, G.2
-
7
-
-
0002142258
-
-
10.1016/S0370-1573(99)00003-4
-
F. Gel'mukhanov and H. Agren, Phys. Rep. 312, 87 (1999). 10.1016/S0370-1573(99)00003-4
-
(1999)
Phys. Rep.
, vol.312
, pp. 87
-
-
Gel'Mukhanov, F.1
Agren, H.2
-
8
-
-
0033908515
-
-
10.1088/0953-4075/33/2/201
-
G. B. Armen, H. Aksela, H. Aberg, and S. Aksela, J. Phys. B 33, R49 (2000). 10.1088/0953-4075/33/2/201
-
(2000)
J. Phys. B
, vol.33
, pp. 49
-
-
Armen, G.B.1
Aksela, H.2
Aberg, H.3
Aksela, S.4
-
10
-
-
30544445376
-
-
10.1088/0953-4075/39/1/R01
-
A. Scrinzi, M. Y. Ivanov, R. Kienberger, and D. M. Villeneuve, J. Phys. B 39, R1 (2006). 10.1088/0953-4075/39/1/R01
-
(2006)
J. Phys. B
, vol.39
, pp. 1
-
-
Scrinzi, A.1
Ivanov, M.Y.2
Kienberger, R.3
Villeneuve, D.M.4
-
11
-
-
34547909579
-
-
10.1126/science.1142135
-
P. H. Bucksbaum, Science 317, 766 (2007). 10.1126/science.1142135
-
(2007)
Science
, vol.317
, pp. 766
-
-
Bucksbaum, P.H.1
-
12
-
-
34547234268
-
-
H. Niikura and P. B. Corkum, Adv. At., Mol., Opt. Phys. 54, 511 (2007).
-
(2007)
Adv. At., Mol., Opt. Phys.
, vol.54
, pp. 511
-
-
Niikura, H.1
Corkum, P.B.2
-
13
-
-
61349134262
-
-
10.1103/RevModPhys.81.163
-
F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009). 10.1103/RevModPhys.81.163
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 163
-
-
Krausz, F.1
Ivanov, M.2
-
14
-
-
0038043745
-
-
10.1038/nature01143
-
M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. S. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, Nature (London) 419, 803 (2002). 10.1038/nature01143
-
(2002)
Nature (London)
, vol.419
, pp. 803
-
-
Drescher, M.1
Hentschel, M.2
Kienberger, R.3
Uiberacker, M.4
Yakovlev, V.S.5
Scrinzi, A.6
Westerwalbesloh, T.7
Kleineberg, U.8
Heinzmann, U.9
Krausz, F.10
-
15
-
-
21044437672
-
-
10.1088/0953-4075/38/9/019
-
M. Drescher and F. Krausz, J. Phys. B 38, S727 (2005). 10.1088/0953-4075/38/9/019
-
(2005)
J. Phys. B
, vol.38
, pp. 727
-
-
Drescher, M.1
Krausz, F.2
-
17
-
-
21544438430
-
-
10.1103/PhysRevA.39.1170
-
T. A. Carlson, D. R. Mullins, C. E. Beall, B. W. Yates, J. W. Taylor, D. W. Lindle, and F. A. Grimm, Phys. Rev. A 39, 1170 (1989). 10.1103/PhysRevA.39. 1170
-
(1989)
Phys. Rev. A
, vol.39
, pp. 1170
-
-
Carlson, T.A.1
Mullins, D.R.2
Beall, C.E.3
Yates, B.W.4
Taylor, J.W.5
Lindle, D.W.6
Grimm, F.A.7
-
19
-
-
0035965795
-
-
10.1088/0953-4075/34/22/302
-
B. Schmidtke, T. Khalil, M. Drescher, N. Müller, N. M. Kabachnik, and U. Heinzmann, J. Phys. B 34, 4293 (2001). 10.1088/0953-4075/34/22/302
-
(2001)
J. Phys. B
, vol.34
, pp. 4293
-
-
Schmidtke, B.1
Khalil, T.2
Drescher, M.3
Müller, N.4
Kabachnik, N.M.5
Heinzmann, U.6
-
20
-
-
36849026674
-
-
10.1103/PhysRevLett.99.233001
-
P. Johnsson, J. Mauritsson, T. Remetter, A. L'Huillier, and K. J. Schafer, Phys. Rev. Lett. 99, 233001 (2007). 10.1103/PhysRevLett.99.233001
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 233001
-
-
Johnsson, P.1
Mauritsson, J.2
Remetter, T.3
L'Huillier, A.4
Schafer, K.J.5
-
21
-
-
40849124643
-
-
10.1103/PhysRevLett.100.073003
-
J. Mauritsson, P. Johnsson, E. Mansten, M. Swoboda, T. Ruchon, A. L'Huillier, and K. J. Schafer, Phys. Rev. Lett. 100, 073003 (2008). 10.1103/PhysRevLett.100.073003
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 073003
-
-
Mauritsson, J.1
Johnsson, P.2
Mansten, E.3
Swoboda, M.4
Ruchon, T.5
L'Huillier, A.6
Schafer, K.J.7
-
23
-
-
0842309867
-
-
10.1126/science.1092220
-
S. N. Pisharody and R. R. Jones, Science 303, 813 (2004). 10.1126/science.1092220
-
(2004)
Science
, vol.303
, pp. 813
-
-
Pisharody, S.N.1
Jones, R.R.2
-
24
-
-
33644505195
-
-
10.1103/PhysRevLett.96.073004
-
S. X. Hu and L. A. Collins, Phys. Rev. Lett. 96, 073004 (2006). 10.1103/PhysRevLett.96.073004
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 073004
-
-
Hu, S.X.1
Collins, L.A.2
-
25
-
-
70349088757
-
-
V. S. Yakovlev and A. Scrinzi, supplement to Ref., 2002, www.nature.com/nature/journal/v419/n6909/suppinfo/nature01143.html
-
(2002)
-
-
Yakovlev, V.S.1
Scrinzi, A.2
-
27
-
-
70349086258
-
-
Ph.D. thesis, Technischen Universität Wien, Wien, Austria
-
V. S. Yakovlev, Ph.D. thesis, Technischen Universität Wien, Wien, Austria, 2003.
-
(2003)
-
-
Yakovlev, V.S.1
-
28
-
-
0000601785
-
-
10.1103/PhysRevLett.88.173904
-
M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, Phys. Rev. Lett. 88, 173904 (2002). 10.1103/PhysRevLett.88.173904
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 173904
-
-
Kitzler, M.1
Milosevic, N.2
Scrinzi, A.3
Krausz, F.4
Brabec, T.5
-
33
-
-
26944487908
-
-
10.1103/PhysRevA.71.060702
-
Z. X. Zhao and C. D. Lin, Phys. Rev. A 71, 060702 (R) (2005). 10.1103/PhysRevA.71.060702
-
(2005)
Phys. Rev. A
, vol.71
, pp. 060702
-
-
Zhao, Z.X.1
Lin, C.D.2
-
34
-
-
18144368983
-
-
10.1103/PhysRevLett.94.023002
-
M. Wickenhauser, J. Burgdörfer, F. Krausz, and M. Drescher, Phys. Rev. Lett. 94, 023002 (2005). 10.1103/PhysRevLett.94.023002
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 023002
-
-
Wickenhauser, M.1
Burgdörfer, J.2
Krausz, F.3
Drescher, M.4
-
38
-
-
33947701120
-
-
10.1103/PhysRevA.75.033412
-
C. Buth and R. Santra, Phys. Rev. A 75, 033412 (2007). 10.1103/PhysRevA.75.033412
-
(2007)
Phys. Rev. A
, vol.75
, pp. 033412
-
-
Buth, C.1
Santra, R.2
-
39
-
-
54849413249
-
-
10.1103/PhysRevA.78.043409
-
C. Buth and R. Santra, Phys. Rev. A 78, 043409 (2008). 10.1103/PhysRevA.78.043409
-
(2008)
Phys. Rev. A
, vol.78
, pp. 043409
-
-
Buth, C.1
Santra, R.2
-
42
-
-
84956133246
-
-
10.1088/0031-8949/1992/T41/013
-
T. Aberg, Phys. Scr. T41, 71 (1992). 10.1088/0031-8949/1992/T41/013
-
(1992)
Phys. Scr.
, vol.41
, pp. 71
-
-
Aberg, T.1
-
43
-
-
34250934933
-
-
10.1007/BF01331022
-
D. M. Wolkow, Z. Phys. 94, 250 (1935). 10.1007/BF01331022
-
(1935)
Z. Phys.
, vol.94
, pp. 250
-
-
Wolkow, D.M.1
-
44
-
-
12444341845
-
-
10.1119/1.1796791
-
L. B. Madsen, Am. J. Phys. 73, 57 (2005). 10.1119/1.1796791
-
(2005)
Am. J. Phys.
, vol.73
, pp. 57
-
-
Madsen, L.B.1
-
45
-
-
37249003360
-
-
10.1088/1742-6596/88/1/012052
-
R. Santra, C. Buth, E. R. Peterson, R. W. Dunford, E. P. Kanter, B. Krässig, S. H. Southworth, and L. Young, J. Phys.: Conf. Ser. 88, 012052 (2007). 10.1088/1742-6596/88/1/012052
-
(2007)
J. Phys.: Conf. Ser.
, vol.88
, pp. 012052
-
-
Santra, R.1
Buth, C.2
Peterson, E.R.3
Dunford, R.W.4
Kanter, E.P.5
Krässig, B.6
Southworth, S.H.7
Young, L.8
-
47
-
-
5344264107
-
-
arXiv:0809.3537
-
L. Young, C. Buth, R. W. Dunford, P. J. Ho, E. P. Kanter, B. Krässig, E. R. Peterson, N. Rohringer, R. Santra, and S. H. Southworth, e-print arXiv:0809.3537, Rev. Mex. Fís. (to be published).
-
Rev. Mex. Fís.
-
-
Young, L.1
Buth, C.2
Dunford, R.W.3
Ho, P.J.4
Kanter, E.P.5
Krässig, B.6
Peterson, E.R.7
Rohringer, N.8
Santra, R.9
Southworth, S.H.10
-
48
-
-
33846410438
-
-
10.1103/PhysRev.81.385
-
J. C. Slater, Phys. Rev. 81, 385 (1951). 10.1103/PhysRev.81.385
-
(1951)
Phys. Rev.
, vol.81
, pp. 385
-
-
Slater, J.C.1
-
51
-
-
36149022808
-
-
10.1103/PhysRev.28.695
-
P. S. Epstein, Phys. Rev. 28, 695 (1926). 10.1103/PhysRev.28.695
-
(1926)
Phys. Rev.
, vol.28
, pp. 695
-
-
Epstein, P.S.1
-
54
-
-
70349151081
-
-
We use the form of a Volkov wave which is the solution of the time-independent Schrödinger equation for the interaction with the electric field in velocity form [Eq. 33] -the interaction with the xuv light is in length form [Eq. 9] -instead of the length form which is used in Ref.. The difference of Eq. (4) in Ref. to our Eq. 34 is the missing factor ei AA L (t) r in our expression.
-
We use the form of a Volkov wave which is the solution of the time-independent Schrödinger equation for the interaction with the electric field in velocity form [Eq. 33] -the interaction with the xuv light is in length form [Eq. 9] -instead of the length form which is used in Ref.. The difference of Eq. (4) in Ref. to our Eq. 34 is the missing factor ei A L (t) r in our expression.
-
-
-
-
55
-
-
0001046909
-
-
10.1103/PhysRevA.22.1786
-
H. R. Reiss, Phys. Rev. A 22, 1786 (1980). 10.1103/PhysRevA.22.1786
-
(1980)
Phys. Rev. A
, vol.22
, pp. 1786
-
-
Reiss, H.R.1
-
57
-
-
70349120489
-
-
Our expressions are written for xuv light only; yet, in the corresponding expressions in Ref., laser dressing is also considered. The slight deviations between both sets of equations due to these different situations are obvious and not mentioned here. Equation (10) in Ref. differs from our Eq. 44 by a factor of 1 2 in the first term on the right-hand side and by a factor of -22 in the second term. Further, Eq. (11) in Ref. agrees with our Eq. 45 apart from a factor of -1 2.
-
Our expressions are written for xuv light only; yet, in the corresponding expressions in Ref., laser dressing is also considered. The slight deviations between both sets of equations due to these different situations are obvious and not mentioned here. Equation (10) in Ref. differs from our Eq. 44 by a factor of 1 2 in the first term on the right-hand side and by a factor of -22 in the second term. Further, Eq. (11) in Ref. agrees with our Eq. 45 apart from a factor of -1 2.
-
-
-
-
58
-
-
38849134074
-
-
10.1103/PhysRevA.77.013413
-
C. Buth and R. Santra, Phys. Rev. A 77, 013413 (2008). 10.1103/PhysRevA.77.013413
-
(2008)
Phys. Rev. A
, vol.77
, pp. 013413
-
-
Buth, C.1
Santra, R.2
-
59
-
-
70349143568
-
-
The difference between our expression 58 -in the limit of vanishing laser intensity-and Eq. (15) in Ref. is a factor -1 2 due to our more elaborate treatment of many-electron effects. Further the minus sign before Δ in Eq. (15) in Ref. is a misprint. Smirnova
-
The difference between our expression 58 -in the limit of vanishing laser intensity-and Eq. (15) in Ref. is a factor -1 2 due to our more elaborate treatment of many-electron effects. Further the minus sign before Δ in Eq. (15) in Ref. is a misprint. Smirnova found that their Eq. 15 without laser field is an excellent approximation for weak laser intensities to a numerically exact solution of the coupled differential equations with a laser field.
-
-
-
-
60
-
-
70349126005
-
-
There is no additional factor of 2 in Eq. 68 compared with Eq. (31) in Ref. to account for the number of electrons in a spatial orbital because our determinantial approach treats the transition from spin orbitals to spatial orbitals fully.
-
There is no additional factor of 2 in Eq. 68 compared with Eq. (31) in Ref. to account for the number of electrons in a spatial orbital because our determinantial approach treats the transition from spin orbitals to spatial orbitals fully.
-
-
-
-
64
-
-
70349154359
-
-
MATHEMATICA 7.0, Wolfram Research, Inc., Champaign, Illinois, USA
-
MATHEMATICA 7.0, Wolfram Research, Inc., Champaign, Illinois, USA, 2008.
-
(2008)
-
-
-
65
-
-
70349159243
-
-
The energy of the krypton 3d shell of -96.6 eV which is used in Ref. is lower than the value of -70eV assumed for ε3d in this paper. The photon energy needs to be adjusted accordingly to 116.6 eV to produce photoelectrons of the same kinetic energy in both cases.
-
The energy of the krypton 3d shell of -96.6 eV which is used in Ref. is lower than the value of -70 eV assumed for ε3d in this paper. The photon energy needs to be adjusted accordingly to 116.6 eV to produce photoelectrons of the same kinetic energy in both cases.
-
-
-
-
67
-
-
70349116188
-
-
In the experiments on Auger decay of krypton 3d holes, the photoelectron was not observed and thus we integrate over its momentum [see Eq. 63]. In doing so, we neglect the impact of the laser on the photoelectrons. This is justified by considering Ref., from which we know that the area under the cross section with and without laser dressing is approximately conserved. Hence, in our quite similar situation, we can assume that the integration over the photoelectron momentum does not vary noticeably whether the laser dressing of the photoelectrons is included or not.
-
In the experiments on Auger decay of krypton 3d holes, the photoelectron was not observed and thus we integrate over its momentum [see Eq. 63]. In doing so, we neglect the impact of the laser on the photoelectrons. This is justified by considering Ref., from which we know that the area under the cross section with and without laser dressing is approximately conserved. Hence, in our quite similar situation, we can assume that the integration over the photoelectron momentum does not vary noticeably whether the laser dressing of the photoelectrons is included or not.
-
-
-
-
68
-
-
70349134852
-
-
The Auger spectrum in Fig. 7 is very broad and extends down to ∼25eV. As the nominal photoelectron energy is 20 eV and the photoelectron spectrum is similarly broadened, the photo- and the Auger electron spectra overlap. To avoid this, a higher xuv photon energy may be used.
-
The Auger spectrum in Fig. 7 is very broad and extends down to ∼25eV. As the nominal photoelectron energy is 20 eV and the photoelectron spectrum is similarly broadened, the photo- and the Auger electron spectra overlap. To avoid this, a higher xuv photon energy may be used.
-
-
-
|