메뉴 건너뛰기




Volumn 80, Issue 3, 2009, Pages

Theory of Auger decay by laser-dressed atoms

Author keywords

[No Author keywords available]

Indexed keywords

AB INITIO; AUGER DECAYS; AUGER-ELECTRON SPECTRA; CONTINUUM ELECTRONS; EXTREME ULTRAVIOLETS; GROUND-STATE ELECTRONS; KRYPTON ATOMS; ONE-PHOTON PROCESS; ORBITALS; PEAK INTENSITY; QUANTUM DYNAMICS; SINGLE ATTOSECOND PULSE; STATES MODEL; STRONG-FIELD APPROXIMATIONS; SUBSHELLS; XUV LIGHT;

EID: 70349137945     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.80.033410     Document Type: Article
Times cited : (20)

References (68)
  • 4
    • 0003894270 scopus 로고    scopus 로고
    • 2nd ed. (Lawrence Berkeley National Laboratory, Berkeley
    • A. C. Thompson, X-Ray Data Booklet, 2nd ed. (Lawrence Berkeley National Laboratory, Berkeley, 2001).
    • (2001) X-Ray Data Booklet
    • Thompson, A.C.1
  • 5
    • 3943077982 scopus 로고
    • 10.1103/PhysRevA.42.6507
    • H. P. Saha, Phys. Rev. A 42, 6507 (1990). 10.1103/PhysRevA.42.6507
    • (1990) Phys. Rev. A , vol.42 , pp. 6507
    • Saha, H.P.1
  • 6
    • 0000710328 scopus 로고
    • edited by W. Mehlhorn Springer, Berlin
    • T. Aberg and G. Howat, in Handbuch der Physik, edited by, W. Mehlhorn, (Springer, Berlin, 1982), Vol. 31, pp. 469-619.
    • (1982) Handbuch der Physik , vol.31 , pp. 469-619
    • Aberg, T.1    Howat, G.2
  • 7
    • 0002142258 scopus 로고    scopus 로고
    • 10.1016/S0370-1573(99)00003-4
    • F. Gel'mukhanov and H. Agren, Phys. Rep. 312, 87 (1999). 10.1016/S0370-1573(99)00003-4
    • (1999) Phys. Rep. , vol.312 , pp. 87
    • Gel'Mukhanov, F.1    Agren, H.2
  • 11
    • 34547909579 scopus 로고    scopus 로고
    • 10.1126/science.1142135
    • P. H. Bucksbaum, Science 317, 766 (2007). 10.1126/science.1142135
    • (2007) Science , vol.317 , pp. 766
    • Bucksbaum, P.H.1
  • 13
    • 61349134262 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.81.163
    • F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009). 10.1103/RevModPhys.81.163
    • (2009) Rev. Mod. Phys. , vol.81 , pp. 163
    • Krausz, F.1    Ivanov, M.2
  • 15
    • 21044437672 scopus 로고    scopus 로고
    • 10.1088/0953-4075/38/9/019
    • M. Drescher and F. Krausz, J. Phys. B 38, S727 (2005). 10.1088/0953-4075/38/9/019
    • (2005) J. Phys. B , vol.38 , pp. 727
    • Drescher, M.1    Krausz, F.2
  • 22
  • 23
    • 0842309867 scopus 로고    scopus 로고
    • 10.1126/science.1092220
    • S. N. Pisharody and R. R. Jones, Science 303, 813 (2004). 10.1126/science.1092220
    • (2004) Science , vol.303 , pp. 813
    • Pisharody, S.N.1    Jones, R.R.2
  • 24
    • 33644505195 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.073004
    • S. X. Hu and L. A. Collins, Phys. Rev. Lett. 96, 073004 (2006). 10.1103/PhysRevLett.96.073004
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 073004
    • Hu, S.X.1    Collins, L.A.2
  • 25
    • 70349088757 scopus 로고    scopus 로고
    • V. S. Yakovlev and A. Scrinzi, supplement to Ref., 2002, www.nature.com/nature/journal/v419/n6909/suppinfo/nature01143.html
    • (2002)
    • Yakovlev, V.S.1    Scrinzi, A.2
  • 27
    • 70349086258 scopus 로고    scopus 로고
    • Ph.D. thesis, Technischen Universität Wien, Wien, Austria
    • V. S. Yakovlev, Ph.D. thesis, Technischen Universität Wien, Wien, Austria, 2003.
    • (2003)
    • Yakovlev, V.S.1
  • 33
    • 26944487908 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.71.060702
    • Z. X. Zhao and C. D. Lin, Phys. Rev. A 71, 060702 (R) (2005). 10.1103/PhysRevA.71.060702
    • (2005) Phys. Rev. A , vol.71 , pp. 060702
    • Zhao, Z.X.1    Lin, C.D.2
  • 36
    • 34249659122 scopus 로고    scopus 로고
    • 10.1088/0953-4075/40/11/017
    • A. K. Kazansky and N. M. Kabachnik, J. Phys. B 40, 2163 (2007). 10.1088/0953-4075/40/11/017
    • (2007) J. Phys. B , vol.40 , pp. 2163
    • Kazansky, A.K.1    Kabachnik, N.M.2
  • 38
    • 33947701120 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.75.033412
    • C. Buth and R. Santra, Phys. Rev. A 75, 033412 (2007). 10.1103/PhysRevA.75.033412
    • (2007) Phys. Rev. A , vol.75 , pp. 033412
    • Buth, C.1    Santra, R.2
  • 39
    • 54849413249 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.78.043409
    • C. Buth and R. Santra, Phys. Rev. A 78, 043409 (2008). 10.1103/PhysRevA.78.043409
    • (2008) Phys. Rev. A , vol.78 , pp. 043409
    • Buth, C.1    Santra, R.2
  • 42
    • 84956133246 scopus 로고
    • 10.1088/0031-8949/1992/T41/013
    • T. Aberg, Phys. Scr. T41, 71 (1992). 10.1088/0031-8949/1992/T41/013
    • (1992) Phys. Scr. , vol.41 , pp. 71
    • Aberg, T.1
  • 43
    • 34250934933 scopus 로고
    • 10.1007/BF01331022
    • D. M. Wolkow, Z. Phys. 94, 250 (1935). 10.1007/BF01331022
    • (1935) Z. Phys. , vol.94 , pp. 250
    • Wolkow, D.M.1
  • 44
    • 12444341845 scopus 로고    scopus 로고
    • 10.1119/1.1796791
    • L. B. Madsen, Am. J. Phys. 73, 57 (2005). 10.1119/1.1796791
    • (2005) Am. J. Phys. , vol.73 , pp. 57
    • Madsen, L.B.1
  • 48
    • 33846410438 scopus 로고
    • 10.1103/PhysRev.81.385
    • J. C. Slater, Phys. Rev. 81, 385 (1951). 10.1103/PhysRev.81.385
    • (1951) Phys. Rev. , vol.81 , pp. 385
    • Slater, J.C.1
  • 51
    • 36149022808 scopus 로고
    • 10.1103/PhysRev.28.695
    • P. S. Epstein, Phys. Rev. 28, 695 (1926). 10.1103/PhysRev.28.695
    • (1926) Phys. Rev. , vol.28 , pp. 695
    • Epstein, P.S.1
  • 54
    • 70349151081 scopus 로고    scopus 로고
    • We use the form of a Volkov wave which is the solution of the time-independent Schrödinger equation for the interaction with the electric field in velocity form [Eq. 33] -the interaction with the xuv light is in length form [Eq. 9] -instead of the length form which is used in Ref.. The difference of Eq. (4) in Ref. to our Eq. 34 is the missing factor ei AA L (t) r in our expression.
    • We use the form of a Volkov wave which is the solution of the time-independent Schrödinger equation for the interaction with the electric field in velocity form [Eq. 33] -the interaction with the xuv light is in length form [Eq. 9] -instead of the length form which is used in Ref.. The difference of Eq. (4) in Ref. to our Eq. 34 is the missing factor ei A L (t) r in our expression.
  • 55
    • 0001046909 scopus 로고
    • 10.1103/PhysRevA.22.1786
    • H. R. Reiss, Phys. Rev. A 22, 1786 (1980). 10.1103/PhysRevA.22.1786
    • (1980) Phys. Rev. A , vol.22 , pp. 1786
    • Reiss, H.R.1
  • 57
    • 70349120489 scopus 로고    scopus 로고
    • Our expressions are written for xuv light only; yet, in the corresponding expressions in Ref., laser dressing is also considered. The slight deviations between both sets of equations due to these different situations are obvious and not mentioned here. Equation (10) in Ref. differs from our Eq. 44 by a factor of 1 2 in the first term on the right-hand side and by a factor of -22 in the second term. Further, Eq. (11) in Ref. agrees with our Eq. 45 apart from a factor of -1 2.
    • Our expressions are written for xuv light only; yet, in the corresponding expressions in Ref., laser dressing is also considered. The slight deviations between both sets of equations due to these different situations are obvious and not mentioned here. Equation (10) in Ref. differs from our Eq. 44 by a factor of 1 2 in the first term on the right-hand side and by a factor of -22 in the second term. Further, Eq. (11) in Ref. agrees with our Eq. 45 apart from a factor of -1 2.
  • 58
    • 38849134074 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.77.013413
    • C. Buth and R. Santra, Phys. Rev. A 77, 013413 (2008). 10.1103/PhysRevA.77.013413
    • (2008) Phys. Rev. A , vol.77 , pp. 013413
    • Buth, C.1    Santra, R.2
  • 59
    • 70349143568 scopus 로고    scopus 로고
    • The difference between our expression 58 -in the limit of vanishing laser intensity-and Eq. (15) in Ref. is a factor -1 2 due to our more elaborate treatment of many-electron effects. Further the minus sign before Δ in Eq. (15) in Ref. is a misprint. Smirnova
    • The difference between our expression 58 -in the limit of vanishing laser intensity-and Eq. (15) in Ref. is a factor -1 2 due to our more elaborate treatment of many-electron effects. Further the minus sign before Δ in Eq. (15) in Ref. is a misprint. Smirnova found that their Eq. 15 without laser field is an excellent approximation for weak laser intensities to a numerically exact solution of the coupled differential equations with a laser field.
  • 60
    • 70349126005 scopus 로고    scopus 로고
    • There is no additional factor of 2 in Eq. 68 compared with Eq. (31) in Ref. to account for the number of electrons in a spatial orbital because our determinantial approach treats the transition from spin orbitals to spatial orbitals fully.
    • There is no additional factor of 2 in Eq. 68 compared with Eq. (31) in Ref. to account for the number of electrons in a spatial orbital because our determinantial approach treats the transition from spin orbitals to spatial orbitals fully.
  • 64
    • 70349154359 scopus 로고    scopus 로고
    • MATHEMATICA 7.0, Wolfram Research, Inc., Champaign, Illinois, USA
    • MATHEMATICA 7.0, Wolfram Research, Inc., Champaign, Illinois, USA, 2008.
    • (2008)
  • 65
    • 70349159243 scopus 로고    scopus 로고
    • The energy of the krypton 3d shell of -96.6 eV which is used in Ref. is lower than the value of -70eV assumed for ε3d in this paper. The photon energy needs to be adjusted accordingly to 116.6 eV to produce photoelectrons of the same kinetic energy in both cases.
    • The energy of the krypton 3d shell of -96.6 eV which is used in Ref. is lower than the value of -70 eV assumed for ε3d in this paper. The photon energy needs to be adjusted accordingly to 116.6 eV to produce photoelectrons of the same kinetic energy in both cases.
  • 67
    • 70349116188 scopus 로고    scopus 로고
    • In the experiments on Auger decay of krypton 3d holes, the photoelectron was not observed and thus we integrate over its momentum [see Eq. 63]. In doing so, we neglect the impact of the laser on the photoelectrons. This is justified by considering Ref., from which we know that the area under the cross section with and without laser dressing is approximately conserved. Hence, in our quite similar situation, we can assume that the integration over the photoelectron momentum does not vary noticeably whether the laser dressing of the photoelectrons is included or not.
    • In the experiments on Auger decay of krypton 3d holes, the photoelectron was not observed and thus we integrate over its momentum [see Eq. 63]. In doing so, we neglect the impact of the laser on the photoelectrons. This is justified by considering Ref., from which we know that the area under the cross section with and without laser dressing is approximately conserved. Hence, in our quite similar situation, we can assume that the integration over the photoelectron momentum does not vary noticeably whether the laser dressing of the photoelectrons is included or not.
  • 68
    • 70349134852 scopus 로고    scopus 로고
    • The Auger spectrum in Fig. 7 is very broad and extends down to ∼25eV. As the nominal photoelectron energy is 20 eV and the photoelectron spectrum is similarly broadened, the photo- and the Auger electron spectra overlap. To avoid this, a higher xuv photon energy may be used.
    • The Auger spectrum in Fig. 7 is very broad and extends down to ∼25eV. As the nominal photoelectron energy is 20 eV and the photoelectron spectrum is similarly broadened, the photo- and the Auger electron spectra overlap. To avoid this, a higher xuv photon energy may be used.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.