메뉴 건너뛰기




Volumn 46, Issue 4, 2009, Pages 860-868

Two semi-empirical approaches for the prediction of oxide ionic conductivities in ABO3 perovskites

Author keywords

CASTEP; Conductivity; Electronic structure; Perovskites; Support vector regression

Indexed keywords

ATOMIC PROPERTIES; BACK-PROPAGATION ARTIFICIAL NEURAL NETWORK; CASTEP; CONDUCTIVITY; ELECTRICAL CONDUCTIVITY; FIRST-PRINCIPLES CALCULATION; GENERALIZATION ABILITY; MACHINE-LEARNING; OXIDE IONIC CONDUCTIVITY; OXIDE-ION CONDUCTIVITY; PARTIAL LEAST SQUARES; PEROVSKITE TYPE OXIDES; PLS MODELS; SEMI-EMPIRICAL APPROACH; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; THREE MACHINE LEARNING METHODS;

EID: 70249138290     PISSN: 09270256     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.commatsci.2009.04.047     Document Type: Article
Times cited : (37)

References (57)
  • 21
    • 70249131545 scopus 로고    scopus 로고
    • A.J. Smola, B. Schölkopf, A Tutorial on Support Vector Regression, NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK, 1998. Available from: .
    • A.J. Smola, B. Schölkopf, A Tutorial on Support Vector Regression, NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK, 1998. Available from: .


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.