-
1
-
-
0003710542
-
-
Kaplan, N. P, Colowick, N. P, DeLuca, M. A, Eds, Methods in Enzymology, Academic Press: New York
-
(a) Bioluminescence and Chemiluminescence; Kaplan, N. P., Colowick, N. P., DeLuca, M. A., Eds.; Methods in Enzymology, Vol. 57; Academic Press: New York, 1978.
-
(1978)
Bioluminescence and Chemiluminescence
, vol.57
-
-
-
2
-
-
0004197749
-
-
Adam, W, Cilento, G, Eds, Academic Press: New York
-
(b) Chemical and Biological Generation of Excited States; Adam, W., Cilento, G., Eds.; Academic Press: New York, 1982.
-
(1982)
Chemical and Biological Generation of Excited States
-
-
-
6
-
-
0014668723
-
-
(a) White, E. H.; Rapaport, E.; Seliger, H. H.; Hopkins, T. A. J. Am. Chem. Soc. 1969, 91, 2178.
-
(1969)
J. Am. Chem. Soc
, vol.91
, pp. 2178
-
-
White, E.H.1
Rapaport, E.2
Seliger, H.H.3
Hopkins, T.A.4
-
7
-
-
0002552327
-
-
(b) White, E. H.; Rapaport, E.; Seliger, H. H.; Hopkins, T. A. Bioorg. Chem. 1971, 1, 92.
-
(1971)
Bioorg. Chem
, vol.1
, pp. 92
-
-
White, E.H.1
Rapaport, E.2
Seliger, H.H.3
Hopkins, T.A.4
-
8
-
-
0017414411
-
-
(c) Shimomura, O.; Goto, T.; Johnson, F. H. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 2799.
-
(1977)
Proc. Natl. Acad. Sci. U.S.A
, vol.74
, pp. 2799
-
-
Shimomura, O.1
Goto, T.2
Johnson, F.H.3
-
9
-
-
0016845629
-
-
(a) White, E. H.; Miano, J. D.; Umbreit, M. J. Am. Chem. Soc. 1975, 97, 198.
-
(1975)
J. Am. Chem. Soc
, vol.97
, pp. 198
-
-
White, E.H.1
Miano, J.D.2
Umbreit, M.3
-
10
-
-
0001424344
-
-
(b) White, E. H.; Steinmetz, M. G.; Miano, J. D.; Wildes, P. D.; Morland, R. J. Am. Chem. Soc. 1980, 102, 3199.
-
(1980)
J. Am. Chem. Soc
, vol.102
, pp. 3199
-
-
White, E.H.1
Steinmetz, M.G.2
Miano, J.D.3
Wildes, P.D.4
Morland, R.5
-
12
-
-
0035957085
-
-
(d) Branchini, B. R.; Magyar, R. A.; Murtiashaw, M. H.; Portier, N. C. Biochemistry 2001, 40, 2410.
-
(2001)
Biochemistry
, vol.40
, pp. 2410
-
-
Branchini, B.R.1
Magyar, R.A.2
Murtiashaw, M.H.3
Portier, N.C.4
-
13
-
-
0037070540
-
-
(e) Branchini, B. R.; Murtiashaw, M. H.; Magyar, R. A.; Portier, N. C.; Ruggiero, M. C.; Stroh, J. G. J. Am. Chem. Soc. 2002, 124, 2112.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 2112
-
-
Branchini, B.R.1
Murtiashaw, M.H.2
Magyar, R.A.3
Portier, N.C.4
Ruggiero, M.C.5
Stroh, J.G.6
-
14
-
-
0037905684
-
-
(a) Orlova, G.; Goddard, J. D.; Brovko, L. Y. J. Am. Chem. Soc. 2003, 125, 6962.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 6962
-
-
Orlova, G.1
Goddard, J.D.2
Brovko, L.Y.3
-
15
-
-
20944447380
-
-
(b) Isobe, H.; Takano, Y.; Okumura, M.; Kuramitsu, S.; Yamaguchi, K. J. Am. Chem. Soc. 2005, 127, 8667.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 8667
-
-
Isobe, H.1
Takano, Y.2
Okumura, M.3
Kuramitsu, S.4
Yamaguchi, K.5
-
16
-
-
34548427946
-
-
(c) Nakatani, N.; Hasegawa, J.; Nakatsuji, H. J. Am. Chem. Soc. 2007, 129, 8756.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 8756
-
-
Nakatani, N.1
Hasegawa, J.2
Nakatsuji, H.3
-
17
-
-
58149169038
-
-
(d) Chung, L. W.; Hayashi, S.; Lundberg, M.; Nakatsu, T.; Kato, H.; Morokuma, K. J. Am. Chem. Soc. 2008, 130, 12880.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 12880
-
-
Chung, L.W.1
Hayashi, S.2
Lundberg, M.3
Nakatsu, T.4
Kato, H.5
Morokuma, K.6
-
19
-
-
20944434701
-
-
(b) Adam, W.; Simpson, G. A.; Yany, F. J. Phys. Chem. 1974, 78, 2559.
-
(1974)
J. Phys. Chem
, vol.78
, pp. 2559
-
-
Adam, W.1
Simpson, G.A.2
Yany, F.3
-
20
-
-
0032557323
-
-
Finley, J.; Malmqvist, P.-Å.; Roos, B. O.; Serrano-Andrés, L. Chem. Phys. Lett. 1998, 288, 299.
-
(1998)
Chem. Phys. Lett
, vol.288
, pp. 299
-
-
Finley, J.1
Malmqvist, P.-A.2
Roos, B.O.3
Serrano-Andrés, L.4
-
21
-
-
34548294633
-
-
De Vico, L.; Liu, Y.-J.; Krogh, J. W.; Lindh, R. J. Phys. Chem. A 2007, 111, 8013.
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 8013
-
-
De Vico, L.1
Liu, Y.-J.2
Krogh, J.W.3
Lindh, R.4
-
22
-
-
70249134887
-
-
Roos, B. O. In Ab Initio Methods in Quantum Chemistry II; Lawley, K. P., Ed.; Advances in Chemical Physics, 69; John Wiley & Sons: New York, 1987; pp 399-446.
-
Roos, B. O. In Ab Initio Methods in Quantum Chemistry II; Lawley, K. P., Ed.; Advances in Chemical Physics, Vol. 69; John Wiley & Sons: New York, 1987; pp 399-446.
-
-
-
-
23
-
-
0344425248
-
-
(a) Schmidt, S. P.; Vincent, M. A.; Dykstra, C. E.; Schuster, G. B. J. Am. Chem. Soc. 1981, 103, 1292.
-
(1981)
J. Am. Chem. Soc
, vol.103
, pp. 1292
-
-
Schmidt, S.P.1
Vincent, M.A.2
Dykstra, C.E.3
Schuster, G.B.4
-
24
-
-
2042485379
-
-
(b) Kasney, M.; Pamuk, H. O.; Trindle, C. THEOCHEM 1983, 104, 459.
-
(1983)
THEOCHEM
, vol.104
, pp. 459
-
-
Kasney, M.1
Pamuk, H.O.2
Trindle, C.3
-
29
-
-
2342519355
-
-
Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. J. Phys. Chem. A 2004, 108, 2851.
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 2851
-
-
Roos, B.O.1
Lindh, R.2
Malmqvist, P.-A.3
Veryazov, V.4
Widmark, P.-O.5
-
30
-
-
33750957169
-
-
De Vico, L.; Olivucci, M.; Lindh, R. J. Chem. Theory Comput. 2005, 1, 1029.
-
(2005)
J. Chem. Theory Comput
, vol.1
, pp. 1029
-
-
De Vico, L.1
Olivucci, M.2
Lindh, R.3
-
31
-
-
70249148883
-
-
The branching space at the CI was established as follows: (1) The analytic energy gradients of the two states were computed for the reference CI structure and for a set of structures corresponding to positive and negative Cartesian displacements of (0.01 and (0.05 au around this reference structure, 2) An energy difference function, G, E0- E1)2, was assumed to be approximated to a quadratic function around the reference CI structure, 3) The analytic Cartesian gradients of G were easily constructed from the energies and analytic energy gradients of the two states, 4) The second-order derivative matrix was constructed numerically by the use of a two-point symmetric formula, 5) The branching vectors were established as the two leading vectors when the second-order derivative matrix was subjected to a reduced Cholesky decomposition. The consistency of the resulting vectors was established by comparing the vectors obtained u
-
2, was assumed to be approximated to a quadratic function around the reference CI structure. (3) The analytic Cartesian gradients of G were easily constructed from the energies and analytic energy gradients of the two states. (4) The second-order derivative matrix was constructed numerically by the use of a two-point symmetric formula. (5) The branching vectors were established as the two leading vectors when the second-order derivative matrix was subjected to a reduced Cholesky decomposition. The consistency of the resulting vectors was established by comparing the vectors obtained using the two differently sized displacements.
-
-
-
-
32
-
-
8344289249
-
-
Ghigo, G.; Roos, B. O.; Malmqvist, P.-Å. Chem. Phys. Lett. 2004, 396, 142.
-
(2004)
Chem. Phys. Lett
, vol.396
, pp. 142
-
-
Ghigo, G.1
Roos, B.O.2
Malmqvist, P.-A.3
-
33
-
-
70249089009
-
-
Andersson, K, et al. MOLCAS, version 7.0; Lund University: Lund, Sweden, 2007
-
(a) Andersson, K.; et al. MOLCAS, version 7.0; Lund University: Lund, Sweden, 2007.
-
-
-
-
34
-
-
0141991885
-
-
(b) Karlström, G.; Lindh, R.; Malmqvist, P.-Å.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P.-O.; Cossi, M.; Schim-melpfennig, B.; Neogrady, P.; Seijo, L. Comput. Mater. Sci. 2003, 28, 222.
-
(2003)
Comput. Mater. Sci
, vol.28
, pp. 222
-
-
Karlström, G.1
Lindh, R.2
Malmqvist, P.-A.3
Roos, B.O.4
Ryde, U.5
Veryazov, V.6
Widmark, P.-O.7
Cossi, M.8
Schim-melpfennig, B.9
Neogrady, P.10
Seijo, L.11
-
35
-
-
7644228184
-
-
(c) Veryazov, V.; Widmark, P.-O.; Serrano-Andrés, L.; Lindh, R.; Roos, B. O. Int. J. Quantum Chem. 2005, 100, 626.
-
(2005)
Int. J. Quantum Chem
, vol.100
, pp. 626
-
-
Veryazov, V.1
Widmark, P.-O.2
Serrano-Andrés, L.3
Lindh, R.4
Roos, B.O.5
-
36
-
-
0028598039
-
-
The entropic trap effect, which is exclusive to multidimensional PESs, acts effectively as if there is a local energy minimum on the PES although no such minimum is present. The effect occurs in cases where the PES is bound in several dimensions but open in only one or a few directions. A molecule that enters such a region with its vibrational modes mainly populating the bound dimensions is forced to spend some time in the entropic trap to redistribute the vibrational mode populations in order to access the dimensions on the PES that are not bound. The time spent in the trap can in some cases be of such a magnitude that it can mistakenly be interpreted as the presence of a true local minimum. An example of this in chemistry is documented in the dissociation of cyclobutane as studied by Zewail and co-workers see: Pedersen, S, Herek, J. L, Zewail, A. H. Science 1994, 266, 1359;
-
The entropic trap effect, which is exclusive to multidimensional PESs, acts effectively as if there is a local energy minimum on the PES although no such minimum is present. The effect occurs in cases where the PES is bound in several dimensions but open in only one or a few directions. A molecule that enters such a region with its vibrational modes mainly populating the bound dimensions is forced to spend some time in the entropic trap to redistribute the vibrational mode populations in order to access the dimensions on the PES that are not bound. The time spent in the trap can in some cases be of such a magnitude that it can mistakenly be interpreted as the presence of a true local minimum. An example of this in chemistry is documented in the dissociation of cyclobutane as studied by Zewail and co-workers (see: Pedersen, S.; Herek, J. L.; Zewail, A. H. Science 1994, 266, 1359;
-
-
-
-
37
-
-
0345082644
-
-
119., The entropic trapping effect becomes more pronounced as the dimensionality of the PES increases
-
Polanyi, J. C.; Zewail, A. H. Acc. Chem. Res. 1995, 28, 119. ). The entropic trapping effect becomes more pronounced as the dimensionality of the PES increases.
-
(1995)
Acc. Chem. Res
, vol.28
-
-
Polanyi, J.C.1
Zewail, A.H.2
|