메뉴 건너뛰기




Volumn 5545 LNCS, Issue PART 2, 2009, Pages 405-415

A parallel nonnegative tensor factorization algorithm for mining global climate data

Author keywords

Data mining; Global climate; Nonnegative tensor factorization; Parallel computation

Indexed keywords

CLUSTER NODES; COMPUTER SCIENTISTS; DATA SETS; GLOBAL CLIMATE; GLOBAL CLIMATES; LARGE DATASETS; MAXIMAL DEGREE; MEMORY USE; NONNEGATIVE TENSOR FACTORIZATION; NONNEGATIVE TENSOR FACTORIZATIONS; NUMERICAL EXPERIMENTS; PARALLEL COMPUTATION; PARALLELIZING; SEA SURFACE TEMPERATURES; STRUCTURAL RELATIONSHIP;

EID: 70149088187     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-01973-9_45     Document Type: Conference Paper
Times cited : (20)

References (15)
  • 3
    • 37749030729 scopus 로고    scopus 로고
    • Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization
    • Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) Springer, Heidelberg
    • Cichocki, A., Zdunek, R., Amari, S.: Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 169-176. Springer, Heidelberg (2007)
    • (2007) ICA 2007. LNCS , vol.4666 , pp. 169-176
    • Cichocki, A.1    Zdunek, R.2    Amari, S.3
  • 6
    • 0037469083 scopus 로고    scopus 로고
    • Recent developments in CANDE-COMP/PARAFAC algorithms: A critical review
    • Faber, N.K.M., Bro, R., Hopke, P.K.: Recent developments in CANDE-COMP/PARAFAC algorithms: a critical review. Chemometr. Intell. Lab. 65, 119-137 (2003)
    • (2003) Chemometr. Intell. Lab. , vol.65 , pp. 119-137
    • Faber, N.K.M.1    Bro, R.2    Hopke, P.K.3
  • 7
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Operations Research Letters 26, 127-136 (2000)
    • (2000) Operations Research Letters , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 9
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D., Seung, H.: Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 401, 788-791 (1999)
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 10
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • Lin, C.: Projected gradient methods for non-negative matrix factorization. Neural Computation 19, 2756-2779 (2007)
    • (2007) Neural Computation , vol.19 , pp. 2756-2779
    • Lin, C.1
  • 11
    • 0028561099 scopus 로고
    • Positive matrix factorization a nonnegative factor model with optimal utilization of error-estimates of data value
    • Paatero, P., Tapper, U.: Positive matrix factorization a nonnegative factor model with optimal utilization of error-estimates of data value. Environmetrics 5, 111-126 (1994)
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 15
    • 60549111308 scopus 로고    scopus 로고
    • Tensor methods for hyperspec-tral data analysis: A space object material identification study
    • Zhang, Q., Wang, H., Plemmons, R., Pauca, P.: Tensor methods for hyperspec-tral data analysis: a space object material identification study. Journal of Optical Society of America A 12, 3001-3012 (2008)
    • (2008) Journal of Optical Society of America A , vol.12 , pp. 3001-3012
    • Zhang, Q.1    Wang, H.2    Plemmons, R.3    Pauca, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.