메뉴 건너뛰기




Volumn 382, Issue , 2009, Pages

Graph construction and b-matching for semi-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

ALTERNATING MINIMIZATION; ARTIFICIAL DATA; B-MATCHING; BENCHMARK DATASETS; BUILDING METHODS; COMPUTATION TIME; EMPIRICAL STUDIES; GAUSSIAN RANDOM FIELDS; GLOBAL CONSISTENCY; GRAPH CONSTRUCTION; GRAPH-BASED; INFERENCE ALGORITHM; K-NEAREST NEIGHBORS METHOD; MACHINE LEARNING SYSTEMS; PREDICTION ACCURACY; REGULAR GRAPHS; ROBUST GRAPHS; SEMI-SUPERVISED LEARNING; SEMI-SUPERVISED METHOD; SPARSIFICATION; WEIGHTED GRAPH;

EID: 70049112735     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1553374.1553432     Document Type: Conference Paper
Times cited : (40)

References (18)
  • 1
    • 33749433229 scopus 로고    scopus 로고
    • Maximum weight matching via max-product belief propagation
    • Bayati, M., Shah, D., & Sharma, M. (2005). Maximum weight matching via max-product belief propagation. Int. Symp. on Information Theory (pp. 1763-1767).
    • (2005) Int. Symp. on Information Theory , pp. 1763-1767
    • Bayati, M.1    Shah, D.2    Sharma, M.3
  • 2
    • 55449104028 scopus 로고    scopus 로고
    • Towards a Theoretical Foundation for Laplacian Based Manifold Methods
    • Belkin, M., & Niyogi, P. (2008). Towards a Theoretical Foundation for Laplacian Based Manifold Methods. J. Comput. System Sci., 1289-1308.
    • (2008) J. Comput. System Sci , pp. 1289-1308
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. Int. Conf. on Mach. Learn. (pp. 19-26).
    • (2001) Int. Conf. on Mach. Learn , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 5
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle, O, Scḧlkopf, B, & Zien, A, Eds, Cambridge, MA: MIT Press
    • Chapelle, O., Scḧlkopf, B., & Zien, A. (Eds.). (2006). Semi-supervised learning. Cambridge, MA: MIT Press.
    • (2006) Semi-supervised learning
  • 10
    • 84858769236 scopus 로고    scopus 로고
    • Influence of graph construction on graph-based clustering measures
    • Maier, M., & Luxburg, U. (2009). Influence of graph construction on graph-based clustering measures. The Neural Information Processing Systems, 22, 1025-1032.
    • (2009) The Neural Information Processing Systems , vol.22 , pp. 1025-1032
    • Maier, M.1    Luxburg, U.2
  • 11
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    • Roweis, S., & Saul, L. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 13
    • 36648998944 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods
    • Wang, F., & Zhang, C. S. (2008). Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng., 20, 55-67.
    • (2008) IEEE Trans. Knowl. Data Eng , vol.20 , pp. 55-67
    • Wang, F.1    Zhang, C.S.2
  • 14
    • 56449085512 scopus 로고    scopus 로고
    • Graph transduction via alternating minimization
    • Wang, J., Jebara, T., & Chang, S. F. (2008). Graph transduction via alternating minimization. Int. Conf. on Mach. Learn. (pp. 1144-1151).
    • (2008) Int. Conf. on Mach. Learn , pp. 1144-1151
    • Wang, J.1    Jebara, T.2    Chang, S.F.3
  • 15
    • 33846580425 scopus 로고    scopus 로고
    • Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study
    • Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. Int. J. Compt. Vision., 73, 213-238.
    • (2007) Int. J. Compt. Vision , vol.73 , pp. 213-238
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4
  • 17
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • 1530, Computer Sciences, University of Wisconsin-Madison
    • Zhu, X. (2005). Semi-supervised learning literature survey (Technical Report 1530). Computer Sciences, University of Wisconsin-Madison.
    • (2005) Technical Report
    • Zhu, X.1
  • 18
    • 1942484430 scopus 로고    scopus 로고
    • Semisupervised learning using gaussian fields and harmonic functions
    • Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semisupervised learning using gaussian fields and harmonic functions. Int. Conf. on Mach. Learn. (pp. 912-919).
    • (2003) Int. Conf. on Mach. Learn , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.