메뉴 건너뛰기




Volumn 29, Issue 2, 2009, Pages 715-731

A classification of explosions in dimension one

Author keywords

[No Author keywords available]

Indexed keywords


EID: 69849110519     PISSN: 01433857     EISSN: 14694417     Source Type: Journal    
DOI: 10.1017/S0143385708080486     Document Type: Article
Times cited : (4)

References (25)
  • 1
    • 0036687074 scopus 로고    scopus 로고
    • Explosions: Global bifurcations at heteroclinic tangencies
    • K. Alligood, E. Sander and J. Yorke. Explosions: global bifurcations at heteroclinic tangencies. Ergod. Th. & Dynam. Sys. 22(4) (2002), 953-972.
    • (2002) Ergod. Th. & Dynam. Sys. , vol.22 , Issue.4 , pp. 953-972
    • Alligood, K.1    Sander, E.2    Yorke, J.3
  • 2
    • 33745292753 scopus 로고    scopus 로고
    • Three-dimensional crisis: Crossing bifurcations and unstable dimension variability
    • 244103
    • K. Alligood, E. Sander and J. Yorke. Three-dimensional crisis: crossing bifurcations and unstable dimension variability. Phys. Rev. Lett. 96(244103) (2006).
    • (2006) Phys. Rev. Lett. , vol.96
    • Alligood, K.1    Sander, E.2    Yorke, J.3
  • 3
    • 0032350635 scopus 로고    scopus 로고
    • All solenoids of piecewise smooth maps are period doubling
    • (Dedicated to the memory of Wiesław Szlenk.)
    • L. Alsedà, V. J. López and L. Snoha. All solenoids of piecewise smooth maps are period doubling. Fund. Math. 157(2-3) (1998), 121-138. (Dedicated to the memory of Wiesław Szlenk.)
    • (1998) Fund. Math. , vol.157 , Issue.2-3 , pp. 121-138
    • Alsedà, L.1    López, V.J.2    Snoha, L.3
  • 4
    • 84966209446 scopus 로고
    • Homoclinic points of mappings of the interval
    • L. Block. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72(3) (1978), 576-580.
    • (1978) Proc. Amer. Math. Soc. , vol.72 , Issue.3 , pp. 576-580
    • Block, L.1
  • 6
    • 0041530172 scopus 로고
    • The bifurcation of homoclinic orbits of maps of the interval
    • L. Block and D. Hart. The bifurcation of homoclinic orbits of maps of the interval. Ergod. Th. & Dynam. Sys. 2(2) (1982), 131-138.
    • (1982) Ergod. Th. & Dynam. Sys. , vol.2 , Issue.2 , pp. 131-138
    • Block, L.1    Hart, D.2
  • 7
    • 33749568613 scopus 로고    scopus 로고
    • Density of periodic orbits in !-limit sets with the Hausdorff metric
    • A. Blokh. Density of periodic orbits in !-limit sets with the Hausdorff metric. Real Anal. Exchange 24(2) (1998/1999), 503-521.
    • (1998) Real Anal. Exchange , vol.24 , Issue.2 , pp. 503-521
    • Blokh, A.1
  • 8
    • 21344439101 scopus 로고    scopus 로고
    • The space of !-limit sets of a continuous map of the interval
    • A. Blokh, A. Bruckner, P. Humke and J. Sm'Ital. The space of !-limit sets of a continuous map of the interval. Trans. Amer. Math. Soc. 348(4) (1996), 1357-1372.
    • (1996) Trans. Amer. Math. Soc. , vol.348 , Issue.4 , pp. 1357-1372
    • Blokh, A.1    Bruckner, A.2    Humke, P.3    Sm'Ital, J.4
  • 11
    • 0001300739 scopus 로고
    • Markov partitions for axiom a diffeomorphisms
    • R. Bowen. Markov partitions for axiom a diffeomorphisms. Amer. J. Math. 92 (1970), 725-747.
    • (1970) Amer. J. Math. , vol.92 , pp. 725-747
    • Bowen, R.1
  • 12
    • 69849115432 scopus 로고
    • C. Conley
    • American Mathematical Society, Providence, RI
    • C. Conley. Isolated Invariant Sets and the Morse Index. American Mathematical Society, Providence, RI, 1978.
    • (1978) Isolated Invariant Sets and the Morse Index
  • 13
    • 0036382961 scopus 로고    scopus 로고
    • Heterodimensional cycles, partial hyperbolicity and limit dynamics
    • L. D'Iaz and J. Rocha. Heterodimensional cycles, partial hyperbolicity and limit dynamics. Fund. Math. 174(2) (2002), 127-186.
    • (2002) Fund. Math. , vol.174 , Issue.2 , pp. 127-186
    • D'Iaz, L.1    Rocha, J.2
  • 14
    • 33947237340 scopus 로고    scopus 로고
    • Non-periodic bifurcations of one-dimensional maps
    • V. Horita, N. Muniz and P. R. Sabini. Non-periodic bifurcations of one-dimensional maps. Ergod. Th. & Dynam. Sys. 27(2) (2007), 459-492.
    • (2007) Ergod. Th. & Dynam. Sys. , vol.27 , Issue.2 , pp. 459-492
    • Horita, V.1    Muniz, N.2    Sabini, P.R.3
  • 15
    • 18144444997 scopus 로고    scopus 로고
    • Period doubling is the boundary of chaos and of order in the C1-topology of interval maps
    • V. J. López. Period doubling is the boundary of chaos and of order in the C1-topology of interval maps. Nonlinearity 15(3) (2002), 817-839.
    • (2002) Nonlinearity , vol.15 , Issue.3 , pp. 817-839
    • López, V.J.1
  • 16
    • 34250112903 scopus 로고
    • Hyperbolicity sinks and measure in one-dimensional dynamics
    • R. Mañé. Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm. Math. Phys. 100(4) (1985), 495-524.
    • (1985) Comm. Math. Phys. , vol.100 , Issue.4 , pp. 495-524
    • Mañé, R.1
  • 17
    • 34249704683 scopus 로고
    • Snap-back repellers imply chaos in Rn
    • F. Marotto. Snap-back repellers imply chaos in Rn. J. Math. Anal. Appl. 63 (1978), 199-223.
    • (1978) J. Math. Anal. Appl. , vol.63 , pp. 199-223
    • Marotto, F.1
  • 18
    • 0001527258 scopus 로고
    • Julia-Fatou-Sullivan theory for real one-dimensional dynamics
    • M. Martens, W. de Melo and S. van Strien. Julia-Fatou-Sullivan theory for real one-dimensional dynamics. Acta Math. 168(3-4) (1992), 273-318.
    • (1992) Acta Math. , vol.168 , Issue.3-4 , pp. 273-318
    • Martens, M.1    De Melo, W.2    Van Strien, S.3
  • 19
    • 0003377111 scopus 로고
    • Cyclesi and bifurcation theory
    • S. Newhouse and J. Palis. Cycles and bifurcation theory. Astérisque 31(44-140) (1976).
    • (1976) Astérisque , vol.31 , pp. 44-140
    • Newhouse, S.1    Palis, J.2
  • 20
    • 0001526473 scopus 로고
    • Hyperbolicity and the creation of homoclinic orbits
    • J. Palis and F. Takens. Hyperbolicity and the creation of homoclinic orbits. Ann. of Math. (2) 125 (1987), 337-374.
    • (1987) Ann. of Math. , vol.2 , Issue.125 , pp. 337-374
    • Palis, J.1    Takens, F.2
  • 22
    • 0010211778 scopus 로고
    • ω-stable limit set explosions
    • S. E. Patterson. ω-stable limit set explosions. Trans. Amer. Math. Soc. 294(2) (1986), 775-798.
    • (1986) Trans. Amer. Math. Soc. , vol.294 , Issue.2 , pp. 775-798
    • Patterson., S.E.1
  • 25
    • 0034230845 scopus 로고    scopus 로고
    • Homoclinic tangles for noninvertible maps
    • E. Sander. Homoclinic tangles for noninvertible maps. Nonlinear Anal. 41(1-2) (2000), 259-276.
    • (2000) Nonlinear Anal. , vol.41 , Issue.1-2 , pp. 259-276
    • Sander, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.