-
4
-
-
5344227893
-
-
10.1103/PhysRevA.10.2141
-
T. G. Winter and C. C. Lin, Phys. Rev. A 10, 2141 (1974). 10.1103/PhysRevA.10.2141
-
(1974)
Phys. Rev. A
, vol.10
, pp. 2141
-
-
Winter, T.G.1
Lin, C.C.2
-
5
-
-
0347247314
-
-
10.1103/PhysRev.169.139
-
D. F. Gallaher and L. Wilets, Phys. Rev. 169, 139 (1968). 10.1103/PhysRev.169.139
-
(1968)
Phys. Rev.
, vol.169
, pp. 139
-
-
Gallaher, D.F.1
Wilets, L.2
-
6
-
-
0344405209
-
-
10.1088/0022-3700/8/7/017
-
R. Shakeshaft, J. Phys. B 8, 1114 (1975). 10.1088/0022-3700/8/7/017
-
(1975)
J. Phys. B
, vol.8
, pp. 1114
-
-
Shakeshaft, R.1
-
7
-
-
18344381508
-
-
10.1103/PhysRevA.14.1626
-
R. Shakeshaft, Phys. Rev. A 14, 1626 (1976). 10.1103/PhysRevA.14.1626
-
(1976)
Phys. Rev. A
, vol.14
, pp. 1626
-
-
Shakeshaft, R.1
-
8
-
-
0000949272
-
-
10.1103/PhysRevA.18.1930
-
R. Shakeshaft, Phys. Rev. A 18, 1930 (1978). 10.1103/PhysRevA.18.1930
-
(1978)
Phys. Rev. A
, vol.18
, pp. 1930
-
-
Shakeshaft, R.1
-
9
-
-
3943073174
-
-
10.1103/PhysRevA.25.697
-
T. G. Winter, Phys. Rev. A 25, 697 (1982). 10.1103/PhysRevA.25.697
-
(1982)
Phys. Rev. A
, vol.25
, pp. 697
-
-
Winter, T.G.1
-
10
-
-
36949000887
-
-
10.1103/PhysRevA.76.062702
-
T. G. Winter, Phys. Rev. A 76, 062702 (2007). 10.1103/PhysRevA.76.062702
-
(2007)
Phys. Rev. A
, vol.76
, pp. 062702
-
-
Winter, T.G.1
-
15
-
-
0030092257
-
-
10.1088/0953-4075/29/6/017
-
J. Kuang and C. D. Lin, J. Phys. B 29, 1207 (1996). 10.1088/0953-4075/29/ 6/017
-
(1996)
J. Phys. B
, vol.29
, pp. 1207
-
-
Kuang, J.1
Lin, C.D.2
-
16
-
-
18344394319
-
-
10.1103/PhysRevA.59.1981
-
N. Toshima, Phys. Rev. A 59, 1981 (1999). 10.1103/PhysRevA.59.1981
-
(1999)
Phys. Rev. A
, vol.59
, pp. 1981
-
-
Toshima, N.1
-
18
-
-
0000563167
-
-
10.1103/PhysRevA.24.1780
-
M. Kimura and W. R. Thorson, Phys. Rev. A 24, 1780 (1981). 10.1103/PhysRevA.24.1780
-
(1981)
Phys. Rev. A
, vol.24
, pp. 1780
-
-
Kimura, M.1
Thorson, W.R.2
-
19
-
-
0036818596
-
-
10.1103/PhysRevA.66.042707
-
S. Zou, L. Pichl, M. Kimura, and T. Kato, Phys. Rev. A 66, 042707 (2002). 10.1103/PhysRevA.66.042707
-
(2002)
Phys. Rev. A
, vol.66
, pp. 042707
-
-
Zou, S.1
Pichl, L.2
Kimura, M.3
Kato, T.4
-
22
-
-
0037694507
-
-
10.1103/PhysRevA.29.567
-
T. G. Winter and C. D. Lin, Phys. Rev. A 29, 567 (1984). 10.1103/PhysRevA.29.567
-
(1984)
Phys. Rev. A
, vol.29
, pp. 567
-
-
Winter, T.G.1
Lin, C.D.2
-
23
-
-
3943079324
-
-
10.1103/PhysRevA.29.3071;
-
T. G. Winter and C. D. Lin, Phys. Rev. A 29, 3071 (1984) 10.1103/PhysRevA.29.3071
-
(1984)
Phys. Rev. A
, vol.29
, pp. 3071
-
-
Winter, T.G.1
Lin, C.D.2
-
24
-
-
35949016859
-
-
10.1103/PhysRevA.30.3323
-
T. G. Winter and C. D. Lin, Phys. Rev. A 30, 3323 (E) (1984). 10.1103/PhysRevA.30.3323
-
(1984)
Phys. Rev. A
, vol.30
, pp. 3323
-
-
Winter, T.G.1
Lin, C.D.2
-
26
-
-
69749083593
-
-
C. D. Lin (private communication).
-
-
-
Lin, C.D.1
-
29
-
-
0347526839
-
-
10.1088/0953-4075/26/21/004
-
H. A. Slim, J. Phys. B 26, L743 (1993). 10.1088/0953-4075/26/21/004
-
(1993)
J. Phys. B
, vol.26
, pp. 743
-
-
Slim, H.A.1
-
32
-
-
0039623695
-
-
10.1088/0953-4075/28/10/005
-
F. Melchert, S. Krüdener, R. Schulze, S. Petri, S. Pfaff, and E. Salzborn, J. Phys. B 28, L355 (1995). 10.1088/0953-4075/28/10/005
-
(1995)
J. Phys. B
, vol.28
, pp. 355
-
-
Melchert, F.1
Krüdener, S.2
Schulze, R.3
Petri, S.4
Pfaff, S.5
Salzborn, E.6
-
33
-
-
0035250594
-
-
10.1088/0953-4075/34/3/322
-
C. Y. Chen, C. L. Cocke, J. P. Giese, F. Melchert, I. Reiser, M. Stöckli, E. Sidky, and C. D. Lin, J. Phys. B 34, 469 (2001). 10.1088/0953-4075/34/3/322
-
(2001)
J. Phys. B
, vol.34
, pp. 469
-
-
Chen, C.Y.1
Cocke, C.L.2
Giese, J.P.3
Melchert, F.4
Reiser, I.5
Stöckli, M.6
Sidky, E.7
Lin, C.D.8
-
34
-
-
3943102822
-
-
This equation (given in a somewhat more general form) has also been derived in a classical Liouville formalism 10.1088/0953-4075/21/10/015
-
This equation (given in a somewhat more general form) has also been derived in a classical Liouville formalism [C. O. Reinhold and C. A. Falcón, J. Phys. B 21, 1829 (1988)]. 10.1088/0953-4075/21/10/015
-
(1988)
J. Phys. B
, vol.21
, pp. 1829
-
-
Reinhold, C.O.1
Falcón, C.A.2
-
35
-
-
0001490553
-
-
10.1103/PhysRevA.58.2872
-
A. Kołakowska, M. S. Pindzola, F. Robicheaux, D. R. Schultz, and J. C. Wells, Phys. Rev. A 58, 2872 (1998). 10.1103/PhysRevA.58.2872
-
(1998)
Phys. Rev. A
, vol.58
, pp. 2872
-
-
Kołakowska, A.1
Pindzola, M.S.2
Robicheaux, F.3
Schultz, D.R.4
Wells, J.C.5
-
36
-
-
0008826206
-
-
10.1088/0370-1298/66/11/301;
-
D. R. Bates and G. Griffing, Proc. Phys. Soc., London, Sect. A 66, 961 (1953) 10.1088/0370-1298/66/11/301
-
(1953)
Proc. Phys. Soc., London, Sect. A
, vol.66
, pp. 961
-
-
Bates, D.R.1
Griffing, G.2
-
37
-
-
0011663464
-
-
edited by D. R. Bates (Academic, New York
-
D. R. Bates, in Atomic and Molecular Processes, edited by, D. R. Bates, (Academic, New York, 1962), pp. 550-556.
-
(1962)
Atomic and Molecular Processes
, pp. 550-556
-
-
Bates, D.R.1
-
38
-
-
69749119419
-
-
The first parameters are zmin =-200 ao, zmax =2000 ao, Rmax =50 ao, Nλ =32, Nμ =40, and ρ=0 (0.15) 3.6 (0.3) 20.4 ao; the second (more stringent) parameters are e1, e2 = 10-8,-6, zmin =-2000 ao, zmax =3000 ao, Rmax =100 ao, Nλ >40, Nμ >80, and ρ=0 (0.1) 3.6 (0.2) 25.6 ao.
-
The first parameters are zmin =-200 ao, zmax =2000 ao, Rmax =50 ao, Nλ =32, Nμ =40, and ρ=0 (0.15) 3.6 (0.3) 20.4 ao; the second (more stringent) parameters are e1, e2 = 10-8,-6, zmin =-2000 ao, zmax =3000 ao, Rmax =100 ao, Nλ >40, Nμ >80, and ρ=0 (0.1) 3.6 (0.2) 25.6 ao.
-
-
-
-
39
-
-
69749115599
-
-
The 92-Sturmian parameters are zmin =-200 ao, zmax =2000 ao, Rmax =120 ao, Nλ >40, Nμ >80, and ρ=0 (0.3) 3.6 (0.6) 20.4 ao. The error in the summed cross section is |ΣQ-π ρ max 2| ≤0.00004× 10-17 cm2 for E>70keV and ≤0.0009× 10-17 cm2 at lower energies.
-
The 92-Sturmian parameters are zmin =-200 ao, zmax =2000 ao, Rmax =120 ao, Nλ >40, Nμ >80, and ρ=0 (0.3) 3.6 (0.6) 20.4 ao. The error in the summed cross section is | ΣQ-π ρ max 2 | ≤0.00004× 10-17 cm2 for E>70keV and ≤0.0009× 10-17 cm2 at lower energies.
-
-
-
-
40
-
-
69749122705
-
-
The 176- (and 140-) Sturmian parameters differing from those of the reference (68-Sturmian) basis (in Sec. 2 1) are - zmin = Rmax =120 ao, Nλ >32, and Nμ >40, while zmax and the ρ 's are the same. The error in the summed cross section is again small: | ΣQ-π ρ max 2 | ≤0.001× 10-17 cm2 (except 0.003× 10-17 cm2 at 75-100 keV) and may independently confirm the numerical accuracy of the cross sections to the tabulated number of digits except for 3d transfer at 75-100 keV.
-
The 176- (and 140-) Sturmian parameters differing from those of the reference (68-Sturmian) basis (in Sec. 2 1) are - zmin = Rmax =120 ao, Nλ >32, and Nμ >40, while zmax and the ρ 's are the same. The error in the summed cross section is again small: | ΣQ-π ρ max 2 | ≤0.001× 10-17 cm2 (except 0.003× 10-17 cm2 at 75-100 keV) and may independently confirm the numerical accuracy of the cross sections to the tabulated number of digits except for 3d transfer at 75-100 keV.
-
-
-
-
41
-
-
69749109037
-
-
The 281-Sturmian parameters are - zmin = zmax =1000 ao, Rmax =60 ao, Nλ >40, Nμ =24, and ρ=0 (0.3) 3.6 (0.6) 6 (1.2) ρmax, with ρmax increasing from 20.4 ao at 100 keV to 49.2 ao at 1000 keV. The error in the summed cross section is small: | ΣQ-π ρ max 2 | ≤0.0001× 10-18 cm2 for E>200keV and 0.0008× 10-18 cm2 at 100 keV.
-
The 281-Sturmian parameters are - zmin = zmax =1000 ao, Rmax =60 ao, Nλ >40, Nμ =24, and ρ=0 (0.3) 3.6 (0.6) 6 (1.2) ρmax, with ρmax increasing from 20.4 ao at 100 keV to 49.2 ao at 1000 keV. The error in the summed cross section is small: | ΣQ-π ρ max 2 | ≤0.0001× 10-18 cm2 for E>200keV and 0.0008× 10-18 cm2 at 100 keV.
-
-
-
-
42
-
-
69749122213
-
-
The use of smaller values of nmax than in the production runs (with nmax =30) does not much affect cross sections except for 4s, which is not converged here; however, the effect of g states on 4s appears negligible, consistent with its negligible effect on the more accurately represented (lower) s states. The 141-state cross sections were obtained using the same parameters as with the 281-Sturmian production basis (except for a coarser ρ mesh up to 1.2 ao to reduce the CPU time, which, however, has only a slight effect on the accuracy). The 185-state cross sections were obtained using the same z range and ρ 's as with the 281-Sturmian basis, except that now ρmax is increased further at very high energies.
-
The use of smaller values of nmax than in the production runs (with nmax =30) does not much affect cross sections except for 4s, which is not converged here; however, the effect of g states on 4s appears negligible, consistent with its negligible effect on the more accurately represented (lower) s states. The 141-state cross sections were obtained using the same parameters as with the 281-Sturmian production basis (except for a coarser ρ mesh up to 1.2 ao to reduce the CPU time, which, however, has only a slight effect on the accuracy). The 185-state cross sections were obtained using the same z range and ρ 's as with the 281-Sturmian basis, except that now ρmax is increased further at very high energies.
-
-
-
-
43
-
-
0010999381
-
-
10.1088/0022-3700/15/16/018
-
H. J. Lüdde and R. M. Dreizler, J. Phys. B 15, 2703 (1982). 10.1088/0022-3700/15/16/018
-
(1982)
J. Phys. B
, vol.15
, pp. 2703
-
-
Lüdde, H.J.1
Dreizler, R.M.2
-
44
-
-
0002189418
-
-
10.1103/PhysRev.148.47
-
G. W. McClure, Phys. Rev. 148, 47 (1966). 10.1103/PhysRev.148.47
-
(1966)
Phys. Rev.
, vol.148
, pp. 47
-
-
McClure, G.W.1
-
45
-
-
0001178684
-
-
10.1103/PhysRevA.26.762
-
W. Fritsch and C. D. Lin, Phys. Rev. A 26, 762 (1982). 10.1103/PhysRevA.26.762
-
(1982)
Phys. Rev. A
, vol.26
, pp. 762
-
-
Fritsch, W.1
Lin, C.D.2
-
46
-
-
0000368773
-
-
10.1103/PhysRevA.27.3361
-
W. Fritsch and C. D. Lin, Phys. Rev. A 27, 3361 (1983). 10.1103/PhysRevA.27.3361
-
(1983)
Phys. Rev. A
, vol.27
, pp. 3361
-
-
Fritsch, W.1
Lin, C.D.2
-
47
-
-
0036148196
-
-
10.1103/PhysRevA.65.012711
-
E. Y. Sidky and C. D. Lin, Phys. Rev. A 65, 012711 (2001). 10.1103/PhysRevA.65.012711
-
(2001)
Phys. Rev. A
, vol.65
, pp. 012711
-
-
Sidky, E.Y.1
Lin, C.D.2
-
48
-
-
0011025903
-
-
10.1103/PhysRev.185.105
-
J. E. Bayfield, Phys. Rev. 185, 105 (1969). 10.1103/PhysRev.185.105
-
(1969)
Phys. Rev.
, vol.185
, pp. 105
-
-
Bayfield, J.E.1
-
49
-
-
0010963537
-
-
10.1103/PhysRevA.10.1167
-
T. Kondow, R. J. Girnius, Y. P. Chong, and W. L. Fite, Phys. Rev. A 10, 1167 (1974). 10.1103/PhysRevA.10.1167
-
(1974)
Phys. Rev. A
, vol.10
, pp. 1167
-
-
Kondow, T.1
Girnius, R.J.2
Chong, Y.P.3
Fite, W.L.4
-
51
-
-
0010967607
-
-
10.1103/PhysRevA.16.933
-
Y. P. Chong and W. L. Fite, Phys. Rev. A 16, 933 (1977). 10.1103/PhysRevA.16.933
-
(1977)
Phys. Rev. A
, vol.16
, pp. 933
-
-
Chong, Y.P.1
Fite, W.L.2
-
55
-
-
0012074360
-
-
10.1088/0953-4075/27/18/017
-
D. Detleffsen, M. Anton, A. Werner, and K.-H. Shartner, J. Phys. B 27, 4195 (1994). 10.1088/0953-4075/27/18/017
-
(1994)
J. Phys. B
, vol.27
, pp. 4195
-
-
Detleffsen, D.1
Anton, M.2
Werner, A.3
Shartner, K.-H.4
-
56
-
-
0344405215
-
-
10.1016/0168-583X(93)95282-A
-
M. P. Hughes, J. Geddes, R. W. McCullough, and H. B. Gilbody, Nucl. Instrum. Methods Phys. Res. B 79, 50 (1993). 10.1016/0168-583X(93)95282-A
-
(1993)
Nucl. Instrum. Methods Phys. Res. B
, vol.79
, pp. 50
-
-
Hughes, M.P.1
Geddes, J.2
McCullough, R.W.3
Gilbody, H.B.4
-
57
-
-
0011007630
-
-
10.1103/PhysRevA.38.1662
-
R. Hippler, H. Madeheim, W. Harbich, H. Kleinpoppen, and H. O. Lutz, Phys. Rev. A 38, 1662 (1988). 10.1103/PhysRevA.38.1662
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1662
-
-
Hippler, R.1
Madeheim, H.2
Harbich, W.3
Kleinpoppen, H.4
Lutz, H.O.5
-
59
-
-
69749096307
-
-
The effect of g states on the ionization cross section is difficult to establish directly in the present Sturmian calculations: for example, whereas the change in the 1 MeV ionization cross section on increasing a purely one-center basis from ≤12 (s,p,d,f) to ≤12 (s,p,d,f,g) is only 0.04%, the change from ≤15 (s,p,d,f) to ≤15 (s,p,d,f,g) is 0.13%. It would take an impractically large Sturmian basis in the present form to establish the converged ionization limit including g states, owing to the long-range behavior of g waves.
-
The effect of g states on the ionization cross section is difficult to establish directly in the present Sturmian calculations: for example, whereas the change in the 1 MeV ionization cross section on increasing a purely one-center basis from ≤12 (s,p,d,f) to ≤12 (s,p,d,f,g) is only 0.04%, the change from ≤15 (s,p,d,f) to ≤15 (s,p,d,f,g) is 0.13%. It would take an impractically large Sturmian basis in the present form to establish the converged ionization limit including g states, owing to the long-range behavior of g waves.
-
-
-
-
60
-
-
69749123713
-
-
To test the convergence with respect to nmax, cross sections were also calculated at 1, 2, 4, 8, and 16 MeV with the single-center bases ≤35 (s,p,d,f) (330 states) and ≤40 (s,p,d,f) (380 states); except for ionization, the changes are in at most the fourth digit and are smaller on going from the 330- to the 380-state basis than from the 280- to the 330-state basis.
-
To test the convergence with respect to nmax, cross sections were also calculated at 1, 2, 4, 8, and 16 MeV with the single-center bases ≤35 (s,p,d,f) (330 states) and ≤40 (s,p,d,f) (380 states); except for ionization, the changes are in at most the fourth digit and are smaller on going from the 330- to the 380-state basis than from the 280- to the 330-state basis.
-
-
-
-
61
-
-
69749115588
-
-
These Born results were obtained here in the impact-parameter version using the same impact parameters as in the coupled-Sturmian approach, with ρmax increasing with energy to 202.8 ao by 16 MeV due to the increasingly long-range behavior of p excitation and p -wave ionization as well as, to some extent, d -wave ionization. The 280-Sturmian cross sections were obtained using the same ρ 's (now extended at high energy) and z range as with the 281-Sturmian basis (with a slightly coarser ρ mesh at 0.6 and 9.6 MeV). For excitation, halving the ρ mesh at 1, 4, and 16 MeV changes the Born results (and presumably the coupled-state results) in at most the fourth digit, except for 4d at 1 MeV and 3d at 16 MeV, for which, however, the changes are only 0.2%.
-
These Born results were obtained here in the impact-parameter version using the same impact parameters as in the coupled-Sturmian approach, with ρmax increasing with energy to 202.8 ao by 16 MeV due to the increasingly long-range behavior of p excitation and p -wave ionization as well as, to some extent, d -wave ionization. The 280-Sturmian cross sections were obtained using the same ρ 's (now extended at high energy) and z range as with the 281-Sturmian basis (with a slightly coarser ρ mesh at 0.6 and 9.6 MeV). For excitation, halving the ρ mesh at 1, 4, and 16 MeV changes the Born results (and presumably the coupled-state results) in at most the fourth digit, except for 4d at 1 MeV and 3d at 16 MeV, for which, however, the changes are only 0.2%. As a further test, the z range in the 280-Sturmian calculation was increased by a factor of 5 to - zmin = zmax =5000 ao at each energy from 1 to 16 MeV, with the maximum change in any cross section being 1 unit in the last reported digit.
-
-
-
|