-
2
-
-
37649032253
-
-
B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 010402 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 010402
-
-
Paredes, B.1
Fedichev, P.2
Cirac, J.I.3
Zoller, P.4
-
3
-
-
0001224320
-
-
A. I. Safonov, S. A. Vasilyev, I. S. Yasnikov, I. I. Lukashevich, and S. Jaakkola, Phys. Rev. Lett. 81, 4545 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4545
-
-
Safonov, A.I.1
Vasilyev, S.A.2
Yasnikov, I.S.3
Lukashevich, I.I.4
Jaakkola, S.5
-
4
-
-
39249084077
-
-
A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 130402
-
-
Görlitz, A.1
Vogels, J.M.2
Leanhardt, A.E.3
Raman, C.4
Gustavson, T.L.5
Abo-Shaeer, J.R.6
Chikkatur, A.P.7
Gupta, S.8
Inouye, S.9
Rosenband, T.10
Ketterle, W.11
-
5
-
-
0036340472
-
-
S. Burger, F. S. Cataliotti, C. Fort, P. Maddaloni, F. Minardi, and M. Inguscio, Europhys. Lett. 57, 1 (2002).
-
(2002)
Europhys. Lett.
, vol.57
, pp. 1
-
-
Burger, S.1
Cataliotti, F.S.2
Fort, C.3
Maddaloni, P.4
Minardi, F.5
Inguscio, M.6
-
6
-
-
4043158948
-
-
M. Hammes, D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm, Phys. Rev. Lett. 90, 173001 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 173001
-
-
Hammes, M.1
Rychtarik, D.2
Engeser, B.3
Nägerl, H.-C.4
Grimm, R.5
-
7
-
-
2942638054
-
-
D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm, Phys. Rev. Lett. 92, 173003 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 173003
-
-
Rychtarik, D.1
Engeser, B.2
Nägerl, H.-C.3
Grimm, R.4
-
8
-
-
0038613097
-
-
Y. Colombe, D. Kadio, M. Olshanii, B. Mercier, V. Lorent, and H. Perrin, J. Opt. B: Quantum Semiclassical Opt. 5, S155 (2003).
-
(2003)
J. Opt. B: Quantum Semiclassical Opt.
, vol.5
-
-
Colombe, Y.1
Kadio, D.2
Olshanii, M.3
Mercier, B.4
Lorent, V.5
Perrin, H.6
-
13
-
-
0036655463
-
-
U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C. Stoof, Phys. Rev. A 66, 013615 (2002).
-
(2002)
Phys. Rev. A
, vol.66
, pp. 013615
-
-
Al Khawaja, U.1
Andersen, J.O.2
Proukakis, N.P.3
Stoof, H.T.C.4
-
17
-
-
0000468638
-
-
N. P. Proukakis, S. A. Morgan, S. Choi, and K. Burnett, Phys. Rev. A 58, 2435 (1998).
-
(1998)
Phys. Rev. A
, vol.58
, pp. 2435
-
-
Proukakis, N.P.1
Morgan, S.A.2
Choi, S.3
Burnett, K.4
-
19
-
-
4444312242
-
-
note
-
Lφ6N/π, the Thomas Fermi radius is smaller than the characteristic radius over which phase fluctuations develop [1].
-
-
-
-
20
-
-
4444277956
-
-
note
-
HFB can be considered as a variant of the Girardeau-Arnowitz approach [21]. As a consequence, a generalization of HFB without breaking the U(1) symmetry is possible but goes beyond the scope of the present paper.
-
-
-
-
22
-
-
4444304565
-
-
note
-
The potential (3) supports a bound state. As a consequence, HFB equations (7)-(9) can lead to nontrivial solutions: Φ=0 whereas ñ ≠ 0 corresponding to a molecular condensate composed of dimers (see Ref. [23] for the 3D case). Condition (12) allows avoiding this problem.
-
-
-
-
23
-
-
4444381626
-
-
L. Pricoupenko, e-print cond-mat/0006263
-
L. Pricoupenko, e-print cond-mat/0006263.
-
-
-
-
24
-
-
4444321947
-
-
note
-
loc is the local chemical potential, in the present case the energy depends self-consistently on the structure and energy of the eigenmodes.
-
-
-
-
26
-
-
4444335703
-
-
note
-
ωL.
-
-
-
|