메뉴 건너뛰기




Volumn 19, Issue 3, 2008, Pages 1073-1092

On the second-order feasibility cone: Primal-dual representation and efficient projection

Author keywords

Computational complexity; Convex cone; Newton method; Projection; Second order cone

Indexed keywords

ARBITRARY POINTS; COMPUTATIONAL TESTS; CONVEX CONE; MATRIX; NEWTON METHOD; PERCEPTRON ALGORITHMS; PRIMAL-DUAL; PROJECTION; SECOND ORDERS; SECOND-ORDER CONE; SPECTRAL DECOMPOSITION;

EID: 69649097969     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/06067198X     Document Type: Article
Times cited : (6)

References (10)
  • 1
    • 0032327612 scopus 로고    scopus 로고
    • Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability, and numerical results
    • F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability, and numerical results, SIAM J. Optim., 8 (1998), pp. 746-768.
    • (1998) SIAM. J. Optim. , vol.8 , pp. 746-768
    • Alizadeh, F.1    Haeberly, J.-P.A.2    Overton, M.L.3
  • 2
    • 69649105663 scopus 로고    scopus 로고
    • Efficiency of a Re-scaled perceptron algorithm for Conic Systems
    • Working paper OR 379-06, Cambridge, MA
    • A. Belloni, R. M. Freund, and S. Vempala, Efficiency of a Re-scaled Perceptron Algorithm for Conic Systems, Working paper OR 379-06, MIT Operations Research Center, Cambridge, MA, 2006.
    • (2006) MIT. Operations Research Center
    • Belloni, A.1    Freund, R.M.2    Vempala, S.3
  • 4
    • 0031540780 scopus 로고    scopus 로고
    • A unifying convergence analysis of second-order methods for secular equations
    • A. Melman, A unifying convergence analysis of second-order methods for secular equations, Math. Comp., 66 (1997), pp. 333-344.
    • (1997) Math. Comp. , vol.66 , pp. 333-344
    • Melman, A.1
  • 5
    • 38549138427 scopus 로고    scopus 로고
    • On the closedness of the linear image of a closed convex cone
    • G. Pataki, On the closedness of the linear image of a closed convex cone, Math. Oper. Res., 32 (2007), pp. 395-412.
    • (2007) Math. Oper. Res. , vol.32 , pp. 395-412
    • Pataki, G.1
  • 6
    • 0003524204 scopus 로고    scopus 로고
    • A Mathematical View of Interior-Point Methods in Convex Optimization
    • J. Renegar, A Mathematical View of Interior-Point Methods in Convex Optimization, SIAM, Philadelphia, 2001.
    • (2001) SIAM., Philadelphia
    • Renegar, J.1
  • 7
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton, NJ
    • R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 9
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones
    • J. Sturm, Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Softw., 11 and 12 (1999), pp. 625-653.
    • (1999) Optim. Methods Softw. , vol.11-12 , pp. 625-653
    • Sturm, J.1
  • 10
    • 0008975068 scopus 로고
    • A new complexity result for minimizing a general quadratic function with a sphere constraint
    • C. Floudas and P. Pardalos, eds., Princeton University Press, Princeton, NJ
    • Y. Ye, A new complexity result for minimizing a general quadratic function with a sphere constraint, in Recent Advances in Global Optimization, C. Floudas and P. Pardalos, eds., Princeton University Press, Princeton, NJ, 1992, pp. 19-31.
    • (1992) Recent Advances in Global Optimization , pp. 19-31
    • Ye, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.