메뉴 건너뛰기




Volumn 49, Issue 1, 2009, Pages 13-55

A shallow water approximation for water waves: Dedicated to the late professor Alexandre V. Kazhikhov

Author keywords

[No Author keywords available]

Indexed keywords


EID: 69549128379     PISSN: 0023608X     EISSN: None     Source Type: Journal    
DOI: 10.1215/kjm/1248983028     Document Type: Article
Times cited : (38)

References (27)
  • 1
    • 0000899089 scopus 로고
    • Encyclopaedia Metropolitana, London
    • G. B. Airy, Tides and waves, Encyclopaedia Metropolitana, London 5 (1845), 241-396.
    • (1845) Tides and Waves , vol.5 , pp. 241-396
    • Airy, G.B.1
  • 2
    • 38349102793 scopus 로고    scopus 로고
    • Large time existence for 3D water- waves and asymptotics
    • B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water- waves and asymptotics, Invent. Math. 171 (2008), 485-541.
    • (2008) Invent. Math. , vol.171 , pp. 485-541
    • Alvarez-Samaniego, B.1    Lannes, D.2
  • 3
    • 0001688084 scopus 로고
    • An existence theory for water waves and the boussinesq and korteweg-de vries scaling limits
    • W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), 787-1003.
    • (1985) Comm. Partial Differential Equations , vol.10 , pp. 787-1003
    • Craig, W.1
  • 5
    • 0003228130 scopus 로고    scopus 로고
    • Partial differential equations
    • American Mathematical Society, Providence, RI
    • L. C. Evans, Partial differential equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, RI, 1998.
    • (1998) Grad. Stud. Math. , vol.19
    • Evans, L.C.1
  • 6
    • 0004661831 scopus 로고
    • On the derivation of the shallow water theory appendix to: "The formulation of breakers and bores" by J. J. stoker
    • K. O. Friedrichs, On the derivation of the shallow water theory, Appendix to: "The formulation of breakers and bores" by J. J. Stoker in Comm. Pure Appl. Math. 1 (1948), 1-87.
    • (1948) Comm. Pure Appl. Math. , vol.1 , pp. 1-87
    • Friedrichs, K.O.1
  • 7
    • 33847163682 scopus 로고    scopus 로고
    • A long wave approximation for capillary-gravity waves and an effect of the bottom
    • T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom, Comm. Partial Differential Equations 32 (2007), 37-85.
    • (2007) Comm. Partial Differential Equations , vol.32 , pp. 37-85
    • Iguchi, T.1
  • 8
    • 34548238144 scopus 로고    scopus 로고
    • A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves
    • -, A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves, Kyushu J. Math. 60 (2006), 267-303.
    • (2006) Kyushu J. Math. , vol.60 , pp. 267-303
  • 9
    • 0039742212 scopus 로고
    • Une théorie trois-dimensionnelle des ondes de surface de veau et le développement de friedrichs
    • 101-155 [French
    • T. Kano, Une théorie trois-dimensionnelle des ondes de surface de Veau et le développement de Friedrichs, J. Math. Kyoto Univ. 26 (1986), 101-155 and 157-175 [French].
    • (1986) J. Math. Kyoto Univ. , vol.26 , pp. 157-175
    • Kano, T.1
  • 10
    • 0040325565 scopus 로고
    • Sur les ondes de surface de Veau avec une justification mathematique des equations des ondes en eau peu profonde
    • [French
    • T. Kano and T. Nishida, Sur les ondes de surface de Veau avec une justification mathematique des equations des ondes en eau peu profonde, J. Math. Kyoto Univ. 19 (1979), 335-370 [French].
    • (1979) J. Math. Kyoto Univ. , vol.19 , pp. 335-370
    • Kano, T.1    Nishida, T.2
  • 11
    • 69549102728 scopus 로고
    • Water waves and Friedrichs expansion
    • Recent topics in nonlinear PDE, North-Holland, Amsterdam
    • -, Water waves and Friedrichs expansion, Recent topics in nonlinear PDE, 39-57, North-Holland Math. Stud. 98, North-Holland, Amsterdam, 1984.
    • (1984) North-Holland Math. Stud. , vol.98 , pp. 39-57
  • 12
    • 84972562218 scopus 로고
    • A mathematical justification for korteweg-de vries equation and boussinesq equation of water surface waves
    • -, A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves, Osaka J. Math. 23 (1986), 389-413.
    • (1986) Osaka J. Math. , vol.23 , pp. 389-413
  • 13
    • 0001524186 scopus 로고
    • On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves
    • D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895), 422-443.
    • (1895) Phil. Mag. , vol.39 , pp. 422-443
    • Korteweg, D.J.1    De Vries, G.2
  • 15
    • 22544482964 scopus 로고    scopus 로고
    • Well-posedness of the water-waves equations
    • D. Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc. 18 (2005), 605-654.
    • (2005) J. Amer. Math. Soc. , vol.18 , pp. 605-654
    • Lannes, D.1
  • 16
    • 33746393705 scopus 로고    scopus 로고
    • A shallow-water approximation to the full water wave problem
    • Y. A. Li, A shallow-water approximation to the full water wave problem, Comm. Pure Appl. Math. 59 (2006), 1225-1285.
    • (2006) Comm. Pure Appl. Math. , vol.59 , pp. 1225-1285
    • Li, Y.A.1
  • 17
    • 0000306561 scopus 로고
    • Dinamika Splosn. Sredy [Russian
    • V. I. Nalimov, The Cauchy-Poisson problem, Dinamika Splosn. Sredy 18 (1974), 104-210 [Russian].
    • (1974) The Cauchy-Poisson Problem , vol.18 , pp. 104-210
    • Nalimov, V.I.1
  • 20
    • 0034364719 scopus 로고    scopus 로고
    • The long-wave limit for the water wave problem I, the case of zero surface tension
    • G. Schneider and C. E. Wayne, The long-wave limit for the water wave problem I, The case of zero surface tension, Comm. Pure Appl. Math. 53 (2000), 1475-1535.
    • (2000) Comm. Pure Appl. Math. , vol.53 , pp. 1475-1535
    • Schneider, G.1    Wayne, C.E.2
  • 21
    • 0036012969 scopus 로고    scopus 로고
    • The Rigorous Approximation of Long-wavelength Capillary-gravity Waves
    • -, The rigorous approximation of long-wavelength capillary-gravity waves, Arch. Rational Mech. Anal. 162 (2002), 247-285.
    • (2002) Arch. Rational Mech. Anal. , vol.162 , pp. 247-285
  • 23
    • 0001360283 scopus 로고
    • The long-wave paradox in the theory of gravity waves
    • F. Ursell, The long-wave paradox in the theory of gravity waves, Proc. Cambridge Philos. Soc. 49 (1953), 685-694.
    • (1953) Proc. Cambridge Philos. Soc. , vol.49 , pp. 685-694
    • Ursell, F.1
  • 24
    • 0031506263 scopus 로고    scopus 로고
    • Well-posedness in Sobolev Spaces of the Full Water Wave Problem In. 2-D
    • S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1997), 39-72.
    • (1997) Invent. Math. , vol.130 , pp. 39-72
    • Wu, S.1
  • 25
    • 0033446356 scopus 로고    scopus 로고
    • Well-posedness in Sobolev spaces of the full water wave problem in. 3-D
    • -, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999), 445-495.
    • (1999) J. Amer. Math. Soc , vol.12 , pp. 445-495
  • 26
    • 85009585833 scopus 로고
    • Gravity waves on the free surface of an incompressible perfect fluid of finite depth
    • H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. RIMS Kyoto Univ. 18 (1982), 49-96.
    • (1982) Publ. RIMS Kyoto Univ. , vol.18 , pp. 49-96
    • Yosihara, H.1
  • 27
    • 34250447917 scopus 로고
    • Stability of periodic waves of finite amplitude on the surface of a deep fluid
    • V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968), 190-194.
    • (1968) J. Appl. Mech. Tech. Phys. , vol.9 , pp. 190-194
    • Zakharov, V.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.