메뉴 건너뛰기




Volumn 19, Issue 1, 2009, Pages 97-108

Convergence of q-Meyer-König-zeller-durrmeyer operators

Author keywords

Q Beta function; Q integers; Q Meyer k nig zeller durrmeyer operators

Indexed keywords


EID: 69549098133     PISSN: 12293067     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (48)

References (21)
  • 1
    • 33750901136 scopus 로고    scopus 로고
    • The q-derivatives and applications to q-Szasz Mirakyan operators
    • A. Aral and V. Gupta, The q-derivatives and applications to q-Szasz Mirakyan operators, Calcolo 43 (2006), 151-170.
    • (2006) Calcolo , vol.43 , pp. 151-170
    • Aral, A.1    Gupta, V.2
  • 3
    • 33750926078 scopus 로고    scopus 로고
    • Korovkin type approximation properties of bivariate q-Meyer König and Zeller operators
    • O. Dogru and V. Gupta, Korovkin type approximation properties of bivariate q-Meyer König and Zeller operators, Calcolo 43, 51-63.
    • Calcolo , vol.43 , pp. 51-63
    • Dogru, O.1    Gupta, V.2
  • 4
    • 20244377695 scopus 로고    scopus 로고
    • U.U.D.M Report 2000:16, ISSN 1101-3591 Department of Mathematics, Upsala University
    • T. Ernst, The history of q-calculus and a new method, U.U.D.M Report 2000:16, ISSN 1101-3591, Department of Mathematics, Upsala University, 2000.
    • The History of Q-calculus and A New Method , pp. 2000
    • Ernst, T.1
  • 5
    • 13344287024 scopus 로고    scopus 로고
    • Korovkin-type theorem and application
    • W. Heping, Korovkin-type theorem and application, J. Approx. Theory, 132 (2005), 258-264.
    • (2005) J. Approx. Theory , vol.132 , pp. 258-264
    • Heping, W.1
  • 6
    • 34447304621 scopus 로고    scopus 로고
    • Properties of convergence for the g-Meyer-König and Zeller operators
    • W. Heping, Properties of convergence for the g-Meyer-König and Zeller operators, J. Math. Anal. Appl., 335 (2) (2007), 1360-1373.
    • (2007) J. Math. Anal. Appl. , vol.335 , Issue.2 , pp. 1360-1373
    • Heping, W.1
  • 7
    • 38049019804 scopus 로고    scopus 로고
    • Properties of convergence for ω, q Bernstein polynomials
    • W. Heping, Properties of convergence for ω, q Bernstein polynomials, J. Math. Anal. Appl. 340 (2) (2008), 1096-1108.
    • (2008) J. Math. Anal. Appl. , vol.340 , Issue.2 , pp. 1096-1108
    • Heping, W.1
  • 8
    • 34548252925 scopus 로고    scopus 로고
    • Saturation of convergence of q-Bernstein polynomials in the case q ≥ 1
    • W. Heping and X. Wu, Saturation of convergence of q-Bernstein polynomials in the case q ≥ 1, J. Math. Anal. Appl, 337 (1) (2008), 744-750.
    • (2008) J. Math. Anal. Appl. , vol.337 , Issue.1 , pp. 744-750
    • Heping, W.1    Wu, X.2
  • 9
    • 34248525495 scopus 로고    scopus 로고
    • Rate of convergence of generalized rational type Baskakov operators
    • N. Ispir, Rate of convergence of generalized rational type Baskakov operators, Math Cornput Modelling 56(5-6) (2001), 625-631.
    • (2001) Math Cornput Modelling , vol.56 , Issue.5-6 , pp. 625-631
    • Ispir, N.1
  • 10
    • 45849130571 scopus 로고    scopus 로고
    • On Kantorovich process of a sequence of generalized linear operators
    • N. Ispir, A. Aral and O. Dogru, On Kantorovich process of a sequence of generalized linear operators, Nonlinear Functional Analysis and Optimization 29 (5-6) (2008), 574-589.
    • (2008) Nonlinear Functional Analysis and Optimization , vol.29 , Issue.5-6 , pp. 574-589
    • Ispir, N.1    Aral, A.2    Dogru, O.3
  • 12
    • 43349089300 scopus 로고    scopus 로고
    • Q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients
    • T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15, no.1 (2008), 51-57.
    • (2008) Russ. J. Math. Phys. , vol.15 , Issue.1 , pp. 51-57
    • Kim, T.1
  • 13
    • 57849089562 scopus 로고    scopus 로고
    • On the multiple q-Genocchi and Euler numbers
    • T. Kim, On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys. 15, no.4 (2008), 481-486.
    • (2008) Russ. J. Math. Phys. , vol.15 , Issue.4 , pp. 481-486
    • Kim, T.1
  • 15
    • 0003214613 scopus 로고
    • Bernstein polynomials
    • Univ. of Toronto Press, Toronto
    • G. G. Lorentz, Bernstein Polynomials, Math. Expo. 8, Univ. of Toronto Press, Toronto, 1953.
    • (1953) Math. Expo. , vol.8
    • Lorentz, G.G.1
  • 16
    • 0043159091 scopus 로고    scopus 로고
    • Q-Bernstein polynomials and their iterates
    • S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 (2003), 232-255.
    • (2003) J. Approx. Theory , vol.123 , pp. 232-255
    • Ostrovska, S.1
  • 17
    • 38949211494 scopus 로고    scopus 로고
    • The first decade of the q-Bernstein polynomials: Results and perspectives
    • S. Ostrovska, The first decade of the q-Bernstein polynomials: Results and perspectives, J. Math. Anal. Approx. Theory 2 (2007), 35-51.
    • (2007) J. Math. Anal. Approx. Theory , vol.2 , pp. 35-51
    • Ostrovska, S.1
  • 18
    • 0009552624 scopus 로고    scopus 로고
    • Griffiths, D. F. and Watson, G.A.(eds): Numerical analysis. Singapore: World Scientific
    • G. M. Phillips, On generalized Bernstein polynomials. In: Griffiths, D. F. and Watson, G.A.(eds): Numerical analysis. Singapore: World Scientific 1996, pp. 263-269.
    • (1996) On Generalized Bernstein Polynomials , pp. 263-269
    • Phillips, G.M.1
  • 19
    • 0011030664 scopus 로고
    • Beitrage zur Theorie der durch die Heinsche Reihe
    • J. Thomae, Beitrage zur Theorie der durch die Heinsche Reihe, J. Reine. Angew. Math. 70 (1869), 258-281.
    • (1869) J. Reine. Angew. Math , vol.70 , pp. 258-281
    • Thomae, J.1
  • 20
    • 13344256239 scopus 로고    scopus 로고
    • Meyer König and Zeller operators based on q-integers
    • T. Trif, Meyer König and Zeller operators based on q-integers, Rev. Anal. Numer. Theor. Approx. 29 (2) (2000), 221-229.
    • (2000) Rev. Anal. Numer. Theor. Approx. , vol.29 , Issue.2 , pp. 221-229
    • Trif, T.1
  • 21
    • 33845302617 scopus 로고
    • Linear positive operators of finite rank
    • Russian
    • V. S. Videnskii, Linear positive operators of finite rank, Leningrad 1985 (Russian).
    • (1985) Leningrad
    • Videnskii, V.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.