메뉴 건너뛰기




Volumn 80, Issue 2, 2009, Pages

Self-consistent geometry in the computation of the vibrational spectra of molecules

Author keywords

[No Author keywords available]

Indexed keywords

ANHARMONIC SYSTEMS; GENERAL APPROACH; LARGE SYSTEM; SELF-CONSISTENT SOLUTION;

EID: 69449099928     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.80.022516     Document Type: Article
Times cited : (5)

References (28)
  • 2
    • 36149010019 scopus 로고
    • 10.1103/PhysRev.47.552
    • C. Eckart, Phys. Rev. 47, 552 (1935). 10.1103/PhysRev.47.552
    • (1935) Phys. Rev. , vol.47 , pp. 552
    • Eckart, C.1
  • 3
    • 84945599356 scopus 로고
    • 10.1080/00268976800101381;
    • J. K. G. Watson, Mol. Phys. 15, 479 (1968) 10.1080/00268976800101381
    • (1968) Mol. Phys. , vol.15 , pp. 479
    • Watson, J.K.G.1
  • 4
    • 0042641964 scopus 로고
    • 10.1080/00268977000101491
    • J. K. G. Watson, Mol. Phys. 19, 465 (1970). 10.1080/00268977000101491
    • (1970) Mol. Phys. , vol.19 , pp. 465
    • Watson, J.K.G.1
  • 6
    • 0036420287 scopus 로고    scopus 로고
    • 10.1146/annurev.physchem.53.082201.124330
    • H. Meyer, Annu. Rev. Phys. Chem. 53, 141 (2002). 10.1146/annurev. physchem.53.082201.124330
    • (2002) Annu. Rev. Phys. Chem. , vol.53 , pp. 141
    • Meyer, H.1
  • 8
    • 84973654655 scopus 로고
    • 10.1002/andp.19273892002
    • M. Born and J. R. Oppenheimer, Ann. Phys. 389, 457 (1927). 10.1002/andp.19273892002
    • (1927) Ann. Phys. , vol.389 , pp. 457
    • Born, M.1    Oppenheimer, J.R.2
  • 19
    • 0004279489 scopus 로고    scopus 로고
    • edited by P. Jensen and P. R. Bunker (John Wiley and Sons, Chichester
    • R. B. Gerber and J. O. Jung, in Computational Molecular Spectroscopy, edited by, P. Jensen, and, P. R. Bunker, (John Wiley and Sons, Chichester, 2000), Chap.
    • (2000) Computational Molecular Spectroscopy
    • Gerber, R.B.1    Jung, J.O.2
  • 22
    • 69449083718 scopus 로고    scopus 로고
    • In Ref., we did not report that, for each vibrational state, the calculated quantum averaged geometry is the same for the three reference geometries.
    • In Ref., we did not report that, for each vibrational state, the calculated quantum averaged geometry is the same for the three reference geometries.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.