-
1
-
-
33745947692
-
-
10.1103/PhysRevLett.58.2059;
-
E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987) 10.1103/PhysRevLett.58. 2059
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2059
-
-
Yablonovitch, E.1
-
2
-
-
26544437684
-
-
10.1103/PhysRevLett.58.2486
-
S. John, Phys. Rev. Lett. 58, 2486 (1987). 10.1103/PhysRevLett.58.2486
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2486
-
-
John, S.1
-
3
-
-
0004082960
-
-
See, e.g., edited by C. M. Soukoulis, NATO Advanced Studies Institute, Series B: Physics (Plenum, New York
-
See, e.g., Photonic Band Gaps and Localization, edited by, C. M. Soukoulis, NATO Advanced Studies Institute, Series B: Physics (Plenum, New York, 1993), Vol. 308
-
(1993)
Photonic Band Gaps and Localization
, vol.308
-
-
-
4
-
-
0001266321
-
-
10.1103/PhysRevE.54.R1078;
-
M. Scalora, Phys. Rev. E 54, R1078 (1996) 10.1103/PhysRevE.54.R1078
-
(1996)
Phys. Rev. e
, vol.54
, pp. 1078
-
-
Scalora, M.1
-
5
-
-
0000500924
-
-
10.1103/PhysRevLett.83.2942
-
A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 83, 2942 (1999). 10.1103/PhysRevLett.83.2942
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 2942
-
-
Imhof, A.1
Vos, W.L.2
Sprik, R.3
Lagendijk, A.4
-
7
-
-
0034726304
-
-
10.1103/PhysRevLett.85.1863
-
H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 85, 1863 (2000). 10.1103/PhysRevLett.85.1863
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1863
-
-
Eisenberg, H.S.1
Silberberg, Y.2
Morandotti, R.3
Aitchison, J.S.4
-
8
-
-
0000233116
-
-
10.1063/1.123502
-
H. Kosaka, Appl. Phys. Lett. 74, 1212 (1999). 10.1063/1.123502
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 1212
-
-
Kosaka, H.1
-
10
-
-
20444442786
-
-
10.1063/1.1830675;
-
R. Iliew, Appl. Phys. Lett. 85, 5854 (2004) 10.1063/1.1830675
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 5854
-
-
Iliew, R.1
-
11
-
-
0347764674
-
-
10.1364/OL.29.000050
-
D. W. Prather, Opt. Lett. 29, 50 (2004). 10.1364/OL.29.000050
-
(2004)
Opt. Lett.
, vol.29
, pp. 50
-
-
Prather, D.W.1
-
12
-
-
32844465934
-
-
10.1103/PhysRevE.73.016601
-
K. Staliunas and R. Herrero, Phys. Rev. E 73, 016601 (2006). 10.1103/PhysRevE.73.016601
-
(2006)
Phys. Rev. e
, vol.73
, pp. 016601
-
-
Staliunas, K.1
Herrero, R.2
-
13
-
-
69449084956
-
-
The modulation of refractive index is represented by the multiplicative term 2imcos (qr) in paraxial propagation approach, which couples the field harmonics by imaginary-valued coupling coefficient im, i.e., reactively. The periodic modulation of the gain is 2mcos (qr), which couples the field harmonics by real-valued coupling coefficient m, i.e., dissipatively.
-
The modulation of refractive index is represented by the multiplicative term 2imcos (qr) in paraxial propagation approach, which couples the field harmonics by imaginary-valued coupling coefficient im, i.e., reactively. The periodic modulation of the gain is 2mcos (qr), which couples the field harmonics by real-valued coupling coefficient m, i.e., dissipatively.
-
-
-
-
14
-
-
38549149770
-
-
10.1103/PhysRevLett.100.030402;
-
Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008) 10.1103/PhysRevLett.100.030402
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 030402
-
-
Musslimani, Z.H.1
Makris, K.G.2
El-Ganainy, R.3
Christodoulides, D.N.4
-
15
-
-
40849137868
-
-
10.1103/PhysRevLett.100.103904
-
K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008). 10.1103/PhysRevLett.100.103904
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 103904
-
-
Makris, K.G.1
El-Ganainy, R.2
Christodoulides, D.N.3
Musslimani, Z.H.4
-
16
-
-
69449096129
-
-
As we deal with the linear systems, we can separate (factorize) the amplification in the uniform gain and in the modulated gain. The uniform part of the gain just results in the exponential growth of the (background) intensity. The effects we report are "on the top" of that exponential background growth (or decay).
-
As we deal with the linear systems, we can separate (factorize) the amplification in the uniform gain and in the modulated gain. The uniform part of the gain just results in the exponential growth of the (background) intensity. The effects we report are "on the top" of that exponential background growth (or decay).
-
-
-
-
17
-
-
33750963343
-
-
It is known that the geometry factors (lattice periods and the lattice symmetry) and the overall modulation depth (the filling factor) of refractive index are the effects of the highest order effects that influence the dispersion properties of the PCs [10.1016/j.optcom.2006.07.036
-
It is known that the geometry factors (lattice periods and the lattice symmetry) and the overall modulation depth (the filling factor) of refractive index are the effects of the highest order effects that influence the dispersion properties of the PCs [Yu. Loiko, C. Serrat, R. Herrero, and K. Staliunas, Opt. Commun. 269, 128 (2007)]. The profile of the refractive index modulation in the individual cell has minor effects on the beam propagation. One can expect that those said above holds also for GLM materials. 10.1016/j.optcom.2006.07.036
-
(2007)
Opt. Commun.
, vol.269
, pp. 128
-
-
Loiko, Yu.1
Serrat, C.2
Herrero, R.3
Staliunas, K.4
|