메뉴 건너뛰기




Volumn 247, Issue 1-3, 2009, Pages 285-294

Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming

Author keywords

Genetic programming; Membrane fouling; Prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CHANGING OPERATING CONDITIONS; DRINKING WATER PRODUCTION; FEED WATER; FEED-FORWARD; FILTRATION PERFORMANCE; FILTRATION TIME; INPUT PARAMETER; MACHINE-LEARNING; MATHEMATICAL FUNCTIONS; MEMBRANE PERFORMANCE; MEMBRANE SYSTEM; MICROFILTRATION SYSTEMS; MODEL MEMBRANES; OPERATING CONDITION; PHYSICAL PROCESS; PILOT SCALE; PREDICTION;

EID: 69349101736     PISSN: 00119164     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.desal.2008.12.031     Document Type: Article
Times cited : (49)

References (12)
  • 1
    • 33747889741 scopus 로고    scopus 로고
    • Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms
    • Sahoo G.B., and Ray C. Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Memb. Sci. 283 (2006) 147-157
    • (2006) J. Memb. Sci. , vol.283 , pp. 147-157
    • Sahoo, G.B.1    Ray, C.2
  • 2
    • 0002287555 scopus 로고
    • Theoretical descriptions of membrane filtration of colloids and fine particles: an assessment and review
    • Bowen W.R., and Jenner F. Theoretical descriptions of membrane filtration of colloids and fine particles: an assessment and review. Adv. Colloid Interf. Sci. 56 (1995) 141-200
    • (1995) Adv. Colloid Interf. Sci. , vol.56 , pp. 141-200
    • Bowen, W.R.1    Jenner, F.2
  • 3
    • 0028987364 scopus 로고
    • Dynamic modeling of crossflow microfiltration using neural networks
    • Dormier M., Decloux M., Trystram G., and Lebert A. Dynamic modeling of crossflow microfiltration using neural networks. J. Memb. Sci. 98 (1995) 263-273
    • (1995) J. Memb. Sci. , vol.98 , pp. 263-273
    • Dormier, M.1    Decloux, M.2    Trystram, G.3    Lebert, A.4
  • 4
    • 0043169729 scopus 로고    scopus 로고
    • Dynamic modeling of milk ultrafiltration by artificial neural networks
    • Razavi M.A., Mortazavi A., and Mousavi M. Dynamic modeling of milk ultrafiltration by artificial neural networks. J. Memb. Sci. 220 (2003) 47-58
    • (2003) J. Memb. Sci. , vol.220 , pp. 47-58
    • Razavi, M.A.1    Mortazavi, A.2    Mousavi, M.3
  • 5
    • 24944461921 scopus 로고    scopus 로고
    • Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks
    • Zhao Y., Taylor J.S., and Chellam S. Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks. J. Membr. Sci. 263 (2005) 38-46
    • (2005) J. Membr. Sci. , vol.263 , pp. 38-46
    • Zhao, Y.1    Taylor, J.S.2    Chellam, S.3
  • 6
    • 33645931361 scopus 로고    scopus 로고
    • Prediction of permeate flux decline in cross-flow membrane filtration of colloidal suspension: a radial basis function neural network approach
    • Chen H., and Kim A.S. Prediction of permeate flux decline in cross-flow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination 192 (2006) 415-428
    • (2006) Desalination , vol.192 , pp. 415-428
    • Chen, H.1    Kim, A.S.2
  • 9
    • 34250682190 scopus 로고    scopus 로고
    • Multi-objective stacking sequence optimization of laminated cylindrical panels using a genetic algorithm and neural networks
    • Abouhamze M., and Shakeri M. Multi-objective stacking sequence optimization of laminated cylindrical panels using a genetic algorithm and neural networks. Compos. Struct. 81 (2007) 253-263
    • (2007) Compos. Struct. , vol.81 , pp. 253-263
    • Abouhamze, M.1    Shakeri, M.2
  • 10
    • 27744586803 scopus 로고    scopus 로고
    • Genetic programming for analysis and real-time prediction of coastal algal blooms
    • Joseph N.M., and Lee H.W. Genetic programming for analysis and real-time prediction of coastal algal blooms. Ecolog. Modeling 189 (2005) 363-376
    • (2005) Ecolog. Modeling , vol.189 , pp. 363-376
    • Joseph, N.M.1    Lee, H.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.