-
1
-
-
0039998729
-
Exponential numbers
-
Bell E.T. Exponential numbers. Am. Math. Monthly 41 (1934) 411-419
-
(1934)
Am. Math. Monthly
, vol.41
, pp. 411-419
-
-
Bell, E.T.1
-
2
-
-
0000794806
-
Exponential polynomials
-
Bell E.T. Exponential polynomials. Ann. Math. 35 (1934) 258-277
-
(1934)
Ann. Math.
, vol.35
, pp. 258-277
-
-
Bell, E.T.1
-
3
-
-
0346719193
-
The iterated exponential numbers
-
Bell E.T. The iterated exponential numbers. Ann. Math. 39 (1938) 539-557
-
(1938)
Ann. Math.
, vol.39
, pp. 539-557
-
-
Bell, E.T.1
-
4
-
-
0004245694
-
-
Abramowitz M., and Stegun I.A. (Eds), Dover Publications Inc., New York
-
In: Abramowitz M., and Stegun I.A. (Eds). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1992), Dover Publications Inc., New York
-
(1992)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
-
-
-
7
-
-
4243375349
-
m / n !) fuer m = 1,2,3,4,5,...
-
m / n !) fuer m = 1,2,3,4,5,.... Grunert Archiv (Arch. f. Math. und Physik) 61 (1877) 333-336
-
(1877)
Grunert Archiv (Arch. f. Math. und Physik)
, vol.61
, pp. 333-336
-
-
Dobinski, G.1
-
8
-
-
21844526661
-
Some Explanations of Dobinski's Formula
-
Chen B., and Yeh Y.-N. Some Explanations of Dobinski's Formula. Studies Appl. Math. 92 (1994) 191-199
-
(1994)
Studies Appl. Math.
, vol.92
, pp. 191-199
-
-
Chen, B.1
Yeh, Y.-N.2
-
9
-
-
0039998726
-
Dobinski-type formula for binomial polynomials
-
Lupas A. Dobinski-type formula for binomial polynomials. Stud. Univ. Babes-Bolyai Math. 33 (1988) 30-44
-
(1988)
Stud. Univ. Babes-Bolyai Math.
, vol.33
, pp. 30-44
-
-
Lupas, A.1
-
11
-
-
0037731682
-
On the combinatorics of normal ordering Bosonic operators and deforming it
-
Schork M. On the combinatorics of normal ordering Bosonic operators and deforming it. J. Phys. A 36 (2003) 4651-4665
-
(2003)
J. Phys. A
, vol.36
, pp. 4651-4665
-
-
Schork, M.1
-
13
-
-
33746689720
-
A series transformation formula and related polynomials
-
Boyadzhiev K.N. A series transformation formula and related polynomials. IJMMS 23 (2005) 3849-3866
-
(2005)
IJMMS
, Issue.23
, pp. 3849-3866
-
-
Boyadzhiev, K.N.1
-
14
-
-
0040357138
-
Bell polynomials of arbitrary (fractional) orders
-
El-Sayed A.M.A., and Rida S.Z. Bell polynomials of arbitrary (fractional) orders. Appl. Math. Comput. 106 (1999) 51-62
-
(1999)
Appl. Math. Comput.
, vol.106
, pp. 51-62
-
-
El-Sayed, A.M.A.1
Rida, S.Z.2
-
15
-
-
0002935511
-
An introduction to fractional calculus. Ch. 1
-
Hilfer R. (Ed), World Scientific, Singapore
-
Butzer P.L., and Westphal U. An introduction to fractional calculus. Ch. 1. In: Hilfer R. (Ed). Applications of Fractional Calculus in Physics (2000), World Scientific, Singapore
-
(2000)
Applications of Fractional Calculus in Physics
-
-
Butzer, P.L.1
Westphal, U.2
-
16
-
-
33847309315
-
-
Elsevier, Amsterdam, The Netherlands
-
Kilbas A.A., Srivastava H.M., and Trujiilo J.J. Theory and Applications of Fractional Differential Equations (2006), Elsevier, Amsterdam, The Netherlands
-
(2006)
Theory and Applications of Fractional Differential Equations
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujiilo, J.J.3
-
18
-
-
0141971727
-
-
University of New Haven Press, New Haven, CT
-
Nishimoto K. Fractional Calculus (1989), University of New Haven Press, New Haven, CT
-
(1989)
Fractional Calculus
-
-
Nishimoto, K.1
-
19
-
-
0003598080
-
-
Gordon and Breach, Yverdon, Switzerland
-
Samko S.G., Kilbas A.A., and Marichev O.I. Fractional Integrals and Derivatives (1993), Gordon and Breach, Yverdon, Switzerland
-
(1993)
Fractional Integrals and Derivatives
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
21
-
-
0014782163
-
Leibnitz rule for fractional derivatives generalized and applications to infinite series
-
Osler T.S. Leibnitz rule for fractional derivatives generalized and applications to infinite series. SIAM Journal of Applied Mathematics 18 (1970) 658-674
-
(1970)
SIAM Journal of Applied Mathematics
, vol.18
, pp. 658-674
-
-
Osler, T.S.1
-
22
-
-
0242723836
-
Fractional Derivatives and Leibnitz Rule
-
Osler T.S. Fractional Derivatives and Leibnitz Rule. American Mathematical Monthly 78 (1971) 645-649
-
(1971)
American Mathematical Monthly
, vol.78
, pp. 645-649
-
-
Osler, T.S.1
-
23
-
-
5244323170
-
The fractional derivative of a composite function
-
Osler T.S. The fractional derivative of a composite function. SIAM J. Math. Anal. 1 (1970) 288-293
-
(1970)
SIAM J. Math. Anal.
, vol.1
, pp. 288-293
-
-
Osler, T.S.1
-
26
-
-
21444436092
-
On the Lambert W function
-
Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., and Knuth D.E. On the Lambert W function. Adv. Comput. Math. 5 (1996) 329-359
-
(1996)
Adv. Comput. Math.
, vol.5
, pp. 329-359
-
-
Corless, R.M.1
Gonnet, G.H.2
Hare, D.E.G.3
Jeffrey, D.J.4
Knuth, D.E.5
-
27
-
-
0037438210
-
A uniform asymptotic expansion of the single variable Bell polynomials
-
Zhao Y.Q. A uniform asymptotic expansion of the single variable Bell polynomials. J. Comput. Appl. Math. 150 (2003) 329-355
-
(2003)
J. Comput. Appl. Math.
, vol.150
, pp. 329-355
-
-
Zhao, Y.Q.1
-
28
-
-
69649096821
-
Asymptotic analysis of the Bell polynomials by the ray method
-
in press, doi:10.1016/j.cam.2009.02.082
-
D. Dominici, Asymptotic analysis of the Bell polynomials by the ray method, J. Comput. Appl. Math., in press, doi:10.1016/j.cam.2009.02.082.
-
J. Comput. Appl. Math
-
-
Dominici, D.1
-
29
-
-
0347040496
-
Strong asymptotics of the generating polynomials of the stirling numbers of the second kind
-
Elbert C. Strong asymptotics of the generating polynomials of the stirling numbers of the second kind. J. Approx. Theory 109 (2001) 198-217
-
(2001)
J. Approx. Theory
, vol.109
, pp. 198-217
-
-
Elbert, C.1
-
30
-
-
0346410320
-
Weak asymptotics of the generating polynomials of the stirling numbers of the second kind
-
Elbert C. Weak asymptotics of the generating polynomials of the stirling numbers of the second kind. J. Approx. Theory 109 (2001) 218-228
-
(2001)
J. Approx. Theory
, vol.109
, pp. 218-228
-
-
Elbert, C.1
|