메뉴 건너뛰기




Volumn , Issue , 2008, Pages 433-444

Machine learning approaches and pattern recognition for spectral data

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATED ANALYSIS; MACHINE LEARNING APPROACHES; SPECTRAL DATA;

EID: 69249218130     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (63)
  • 1
    • 84887001358 scopus 로고
    • Analysis und mathematische Physik. BSB B.G
    • Leipzig, 3rd, revised edition
    • H. Triebel. Analysis und mathematische Physik. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 3rd, revised edition, 1989.
    • (1989) Teubner Verlagsgesellschaft
    • Triebel, H.1
  • 5
    • 69049098650 scopus 로고    scopus 로고
    • Sobolev metrics for learning of functional data - mathematical and theoretical aspects
    • 1(MLR-03-2007), ISSN:1865-3960
    • T. Villmann. Sobolev metrics for learning of functional data - mathematical and theoretical aspects. Machine Learning Reports, 1(MLR-03-2007):1-15, 2007. ISSN:1865-3960, http://www.uni-leipzig.de/compint/mlr/mlr_01_2007.pdf.
    • (2007) Machine Learning Reports , pp. 1-15
    • Villmann, T.1
  • 6
    • 84887008481 scopus 로고    scopus 로고
    • Consistency of derivative based functional classifiers on sampled data
    • In M. Verleysen, editor, page in this volume, Evere, Belgium, 2008. d-side publications
    • F. Rossi and N. Villa. Consistency of derivative based functional classifiers on sampled data. In M. Verleysen, editor, Proc. Of European Symposium on Artificial Neural Networks (ESANN'2008), page in this volume, Evere, Belgium, 2008. d-side publications.
    • Proc. of European Symposium On Artificial Neural Networks (ESANN'2008)
    • Rossi, F.1    Villa, N.2
  • 7
    • 84890262130 scopus 로고    scopus 로고
    • Generalization of the lp norm for time series and its application to self-organizing maps
    • In M. Cottrell, editor, Paris, Sorbonne
    • J. Lee and M. Verleysen. Generalization of the lp norm for time series and its application to self-organizing maps. In M. Cottrell, editor, Proc. of Workshop on Self-Organizing Maps (WSOM) 2005, pages 733-740, Paris, Sorbonne, 2005.
    • (2005) Proc. of Workshop On Self-Organizing Maps (WSOM) 2005 , pp. 733-740
    • Lee, J.1    Verleysen, M.2
  • 9
    • 0030537857 scopus 로고    scopus 로고
    • Smoothed functional principal components analysis by the choice of norm
    • B.W. Silverman. Smoothed functional principal components analysis by the choice of norm. The Annals of Statistics, 24(1):1-24, 1996.
    • (1996) The Annals of Statistics , vol.24 , Issue.1 , pp. 1-24
    • Silverman, B.W.1
  • 12
    • 84887013346 scopus 로고    scopus 로고
    • Linear projection based on noise variance estimation - application to spectral data
    • M. Verleysen, editor, page in this volume, Evere, Belgium, 2008. d-side publications
    • A. Lendasse and F. Corona. Linear projection based on noise variance estimation - application to spectral data. In M. Verleysen, editor, Proc. Of European Symposium on Artificial Neural Networks (ESANN'2008), page in this volume, Evere, Belgium, 2008. d-side publications.
    • Proc. of European Symposium On Artificial Neural Networks (ESANN'2008)
    • Lendasse, A.1    Corona, F.2
  • 13
    • 84887004479 scopus 로고    scopus 로고
    • Generalized matrix learning vector quantizer for the analysis of spectral data
    • M. Verleysen, editor, page in this volume, Evere, Belgium, 2008. d-side publications
    • P. Schneider, F.-M. Schleif, T. Villmann, and M. Biehl. Generalized matrix learning vector quantizer for the analysis of spectral data. In M. Verleysen, editor, Proc. Of European Symposium on Artificial Neural Networks (ESANN'2008), page in this volume, Evere, Belgium, 2008. d-side publications.
    • Proc. of European Symposium On Artificial Neural Networks (ESANN'2008)
    • Schneider, P.1    Schleif, F.-M.2    Villmann, T.3    Biehl, M.4
  • 15
    • 0028757233 scopus 로고
    • Comparison of neural network to standard techniques for image classification and correlation
    • Caltech, Pasadena, CA, August 8-12
    • J. D. Paola and R. A. Schowengerdt. Comparison of neural network to standard techniques for image classification and correlation. In Proc. Int'l Geosci. and Remote Sensing Symposium, volume 111, pages 1404-1405, Caltech, Pasadena, CA, August 8-12 1994.
    • (1994) Proc. Int'l Geosci. and Remote Sensing Symposium , vol.111 , pp. 1404-1405
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 16
    • 11144311225 scopus 로고    scopus 로고
    • Effect of Mars analogue dust deposition on the automated detection of calcite in visible/near-infrared spectra
    • M.S. Gilmore, M.D. Merrill, R. Castano, B. Bornstein, and J. Greenwood. Effect of Mars analogue dust deposition on the automated detection of calcite in visible/near-infrared spectra. Icarus, 172:641-646, 2004.
    • (2004) Icarus , vol.172 , pp. 641-646
    • Gilmore, M.S.1    Merrill, M.D.2    Castano, R.3    Bornstein, B.4    Greenwood, J.5
  • 19
    • 0037379640 scopus 로고    scopus 로고
    • Neural maps in remote sensing image analysis
    • T. Villmann, E. Merényi, and B. Hammer. Neural maps in remote sensing image analysis. Neural Networks, 16:389-403, 2003.
    • (2003) Neural Networks , vol.16 , pp. 389-403
    • Villmann, T.1    Merényi, E.2    Hammer, B.3
  • 20
    • 33645887817 scopus 로고    scopus 로고
    • Automated classification of landforms on mars
    • B. D. Bue and T. F. Stepinski. Automated classification of landforms on mars. Computers & Geosciences, 32(5):604-614, 2006.
    • (2006) Computers & Geosciences , vol.32 , Issue.5 , pp. 604-614
    • Bue, B.D.1    Stepinski, T.F.2
  • 22
    • 0028255462 scopus 로고
    • Classification of asteroid spectra using a neural network
    • 10
    • E. S. Howell, E. Merényi, and L. A. Lebofsky. Classification of asteroid spectra using a neural network. Jour. Geophys. Res., 99(5):10,847-865, 1994.
    • (1994) Jour. Geophys. Res. , vol.99 , Issue.5 , pp. 847-865
    • Howell, E.S.1    Merényi, E.2    Lebofsky, L.A.3
  • 24
    • 0031098234 scopus 로고    scopus 로고
    • ART neural networks for remote sensing: Vegetation classification from Landsat TM and terrain data
    • G. A. Carpenter, M. N. Gjaja, et al. ART neural networks for remote sensing: Vegetation classification from Landsat TM and terrain data. IEEE. Trans. Geosci. and Remote Sens., 35(2):308-325, 1997.
    • (1997) IEEE. Trans. Geosci. and Remote Sens , vol.35 , Issue.2 , pp. 308-325
    • Carpenter, G.A.1    Gjaja, M.N.2
  • 26
    • 84886999132 scopus 로고    scopus 로고
    • A simple associative neural network for producing spatially homogeneous spectral abundance interpretations of hyperspectral imagery
    • Brussels, Belgium, 1999. D facto publications
    • N. Pendock. A simple associative neural network for producing spatially homogeneous spectral abundance interpretations of hyperspectral imagery. In Proc. of European Symposium on Artificial Neural Networks (ESANN'99), pages 99-104, Brussels, Belgium, 1999. D facto publications.
    • Proc. of European Symposium On Artificial Neural Networks (ESANN'99) , pp. 99-104
    • Pendock, N.1
  • 27
    • 84887011285 scopus 로고    scopus 로고
    • Inverting hyperspectral images with gaussian regularized sliced inverse regression
    • M. Verleysen, editor, page in this volume, Evere, Belgium, 2008. d-side publications
    • C. Bernard-Michel, S. Douté, L. Gardes, and S. Girard. Inverting hyperspectral images with gaussian regularized sliced inverse regression. In M. Verleysen, editor, Proc. Of European Symposium on Artificial Neural Networks (ESANN'2008), page in this volume, Evere, Belgium, 2008. d-side publications.
    • Proc. of European Symposium On Artificial Neural Networks (ESANN'2008)
    • Bernard-Michel, C.1    Douté, S.2    Gardes, L.3    Girard, S.4
  • 29
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer and Th. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 30
    • 42549151882 scopus 로고    scopus 로고
    • Relevance-based feature extraction for hyperspectral images
    • in press, May
    • M.J. Mendenhall and E. Merényi. Relevance-based feature extraction for hyperspectral images. IEEE Trans. on Neural Networks, in press, May 2008.
    • (2008) IEEE Trans. On Neural Networks
    • Mendenhall, M.J.1    Merényi, E.2
  • 33
  • 34
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Chris H.Q. Ding and Inna Dubchak. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17:349-358, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 35
    • 84889866266 scopus 로고    scopus 로고
    • Unsupervised machine learning to support functional characterization of genes: Emphasis on cluster description and class discovery
    • Francisco Azuaje and Joaquín Dopazo, editors, John Wiley
    • Olga G. Troyanskaya. Unsupervised machine learning to support functional characterization of genes: Emphasis on cluster description and class discovery. In Francisco Azuaje and Joaquín Dopazo, editors, Data Analysis and Visualization in Genomics and Proteomics. John Wiley, 2005.
    • (2005) Data Analysis and Visualization In Genomics and Proteomics
    • Troyanskaya, O.G.1
  • 36
    • 34249857996 scopus 로고    scopus 로고
    • Bio-basis function neural networks in protein data mining
    • Zheng Rong Yang and Rebecca Hamer. Bio-basis function neural networks in protein data mining. Current Pharmaceutical Design, 13(14):1403-1413, 2007.
    • (2007) Current Pharmaceutical Design , vol.13 , Issue.14 , pp. 1403-1413
    • Yang, Z.R.1    Hamer, R.2
  • 37
    • 33745043489 scopus 로고    scopus 로고
    • A bio-basis function neural network for protein peptide cleavage activity characterisation
    • Zheng Rong Yang, Jonathan Dry, Rebecca Thomson, and T. Charles Hodgman. A bio-basis function neural network for protein peptide cleavage activity characterisation. Neural Networks, 19(4):401-407, 2007.
    • (2007) Neural Networks , vol.19 , Issue.4 , pp. 401-407
    • Yang, Z.R.1    Dry, J.2    Thomson, R.3    Hodgman, T.C.4
  • 38
    • 0037195776 scopus 로고    scopus 로고
    • Using functional domain composition and support vector machines for prediction of protein subcellular location
    • Kuo-Chen Chou and Yu-Dong Cai. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem., 277:45765-45769, 2002.
    • (2002) J. Biol. Chem , vol.277 , pp. 45765-45769
    • Chou, K.-C.1    Cai, Y.-D.2
  • 39
    • 0029387830 scopus 로고
    • Neural networks for fullscale protein sequence classification: Sequence encoding with singular value decomposition
    • Cathy Wu, Michael Berry, Sailaja Shivakumar, and Jerry McLarty. Neural networks for fullscale protein sequence classification: Sequence encoding with singular value decomposition. Machine Learning, 21(1-2):6-15, 1995.
    • (1995) Machine Learning , vol.21 , Issue.1-2 , pp. 6-15
    • Cathy, W.1    Berry, M.2    Shivakumar, S.3    McLarty, J.4
  • 40
    • 27544437865 scopus 로고    scopus 로고
    • A hybrid machinelearning approach for segmentation of protein localization data
    • Peter M. Kasson, Johannes B. Huppa, Mark M. Davis, and Axel T. Brunger. A hybrid machinelearning approach for segmentation of protein localization data. Bioinformatics, 21(19):3778-3786, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.19 , pp. 3778-3786
    • Kasson, P.M.1    Huppa, J.B.2    Davis, M.M.3    Brunger, A.T.4
  • 41
    • 0033670134 scopus 로고    scopus 로고
    • Engineering support vector machine kernels that recognize translation initiation sites
    • Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Thomas Lengauer, and Klaus-Robert Müller. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 16(9):799-807, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.9 , pp. 799-807
    • Zien, A.1    Rätsch, G.2    Mika, S.3    Schölkopf, B.4    Lengauer, T.5    Müller, K.-R.6
  • 42
    • 0037731046 scopus 로고    scopus 로고
    • Application of metabolomics to plant genotype discrimination using statistics and machine learning
    • 90002
    • Janet Taylor, Ross D. King, Thomas Altmann, and Oliver Fiehn. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 18(90002):S241-S258, 2002.
    • (2002) Bioinformatics , vol.18
    • Taylor, J.1    King, R.D.2    Altmann, T.3    Fiehn, O.4
  • 43
    • 84886999087 scopus 로고    scopus 로고
    • Aggregation of multiple peaklists by use of an improved neural gas network
    • 1(MLR-02-2007), ISSN:1865-3960
    • F.-M. Schleif, A. Hasenfuss, and T. Villmann. Aggregation of multiple peaklists by use of an improved neural gas network. Machine Learning Reports, 1(MLR-02-2007):1-14, 2007. ISSN:1865-3960, http://www.uni-leipzig.de/compint/mlr/mlr_01_2007.pdf.
    • (2007) Machine Learning Reports , pp. 1-14
    • Schleif, F.-M.1    Hasenfuss, A.2    Villmann, T.3
  • 45
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein finger printing coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • July
    • B.L. Adam et al. Serum protein finger printing coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Research, 62(13):3609-3614, July 2002.
    • (2002) Cancer Research , vol.62 , Issue.13 , pp. 3609-3614
    • Adam, B.L.1
  • 46
    • 84887001987 scopus 로고    scopus 로고
    • Machine learning and soft-computing in bioinformatics - a short jorney
    • D. Ruan, P. D'hondt, P.F. Fantoni, M. De Cock, M. Nachtegael, and E.E. Kerre, editors, Singapore, 2006. World Scientific. ISBN:981-256-690-2
    • F.-M. Schleif, T. Villmann, T. Elssner, J. Decker, and M. Kostrzewa. Machine learning and soft-computing in bioinformatics - a short jorney. In D. Ruan, P. D'hondt, P.F. Fantoni, M. De Cock, M. Nachtegael, and E.E. Kerre, editors, Applied Artificial Intel ligence - Proceedings FLINS 2007, pages 541-548, Singapore, 2006. World Scientific. ISBN:981-256-690-2.
    • Applied Artificial Intel Ligence - Proceedings FLINS 2007 , pp. 541-548
    • Schleif, F.-M.1    Villmann, T.2    Elssner, T.3    Decker, J.4    Kostrzewa, M.5
  • 48
    • 37349033483 scopus 로고    scopus 로고
    • Exploring alternative wavelet base selection techniques with application to high resolution radar classification
    • IEEE Press
    • D.E. Waagen, M.L. Cassabaum, C. Scott, and H.A. Schmitt. Exploring alternative wavelet base selection techniques with application to high resolution radar classification. In Proc. of the 6th Int. Conf. on Inf. Fusion (ISIF'03), pages 1078-1085. IEEE Press, 2003.
    • (2003) Proc. of the 6th Int. Conf. On Inf. Fusion (ISIF'03) , pp. 1078-1085
    • Waagen, D.E.1    Cassabaum, M.L.2    Scott, C.3    Schmitt, H.A.4
  • 49
    • 84886999087 scopus 로고    scopus 로고
    • Aggregation of multiple peaklists by use of an improved neural gas network
    • 1(MLR-02-2007), ISSN:1865-3960
    • F.-M. Schleif. Aggregation of multiple peaklists by use of an improved neural gas network. Machine Learning Reports, 1(MLR-02-2007):1-14, 2007. ISSN:1865-3960, http://www.unileipzig. de/compint/mlr/mlr_01_2007.pdf.
    • (2007) Machine Learning Reports , pp. 1-14
    • Schleif, F.-M.1
  • 50
    • 0029938380 scopus 로고    scopus 로고
    • Emergnece of simple-cell receptive field properties by learning a sparse code for natural images
    • B.A. Olshausen and D.J. Finch. Emergnece of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Finch, D.J.2
  • 61
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • B. Hammer, M. Strickert, and Th. Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 62
    • 0002399288 scopus 로고
    • Neural networks, principle components and suspaces
    • E. Oja. Neural networks, principle components and suspaces. International Journal of Neural Systems, 1:61-68, 1989.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.