메뉴 건너뛰기




Volumn 215, Issue 3, 2009, Pages 973-982

HPBILc: A histogram-based EDA for continuous optimization

Author keywords

Continuous optimization; Estimation of distribution algorithms; Histogram probabilistic model

Indexed keywords

CONTINUOUS OPTIMIZATION; CONTINUOUS PROBLEMS; ESTIMATION OF DISTRIBUTION ALGORITHMS; EVOLUTIONARY COMPUTATIONS; FAST EVOLUTIONARY PROGRAMMING; HISTOGRAM MODELS; HISTOGRAM PROBABILISTIC MODEL; MULTI-MODAL; OPTIMAL SOLUTIONS; POPULATION-BASED INCREMENTAL LEARNING; PROBABILISTIC MODELS; SOLUTION DISTRIBUTION; TEST FUNCTIONS;

EID: 69249215139     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2009.06.019     Document Type: Article
Times cited : (11)

References (13)
  • 1
    • 0041481252 scopus 로고    scopus 로고
    • Larrañaga P., and Lozano J.A. (Eds), Kuwer, Norwell, MA
    • In: Larrañaga P., and Lozano J.A. (Eds). Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation (2002), Kuwer, Norwell, MA
    • (2002) A New Tool for Evolutionary Computation
  • 2
    • 0001955592 scopus 로고    scopus 로고
    • Using optimal dependency-trees for combinatorial optimization: Learning the structure for the search space
    • S. Baluja, S. Davies, Using optimal dependency-trees for combinatorial optimization: learning the structure for the search space, in: Proc. 14th Int. Conf. Machine Learning, 1997, pp. 30-38.
    • (1997) Proc. 14th Int. Conf. Machine Learning , pp. 30-38
    • Baluja, S.1    Davies, S.2
  • 5
    • 84947922384 scopus 로고    scopus 로고
    • Expanding from discrete to continuous estimation of distribution algorithms: The IDEA
    • P.A.N. Bosnian, D. Thierens, Expanding from discrete to continuous estimation of distribution algorithms: the IDEA, in: Parallel Problem Solving from Nature - PPSN VI, 2000, pp. 767-776.
    • (2000) Parallel Problem Solving from Nature - PPSN VI , pp. 767-776
    • Bosnian, P.A.N.1    Thierens, D.2
  • 8
    • 55749104386 scopus 로고    scopus 로고
    • NichingEDA: Utilizing the diversity inside a population of EDAs for continuous optimization
    • Hong Kong
    • Weishan Dong, Xin Yao, NichingEDA: utilizing the diversity inside a population of EDAs for continuous optimization, in: Proc. of 2008 IEEE Congress on Evolutionary Computation (CEC 2008), Hong Kong, 2008, pp. 1260-1267.
    • (2008) Proc. of 2008 IEEE Congress on Evolutionary Computation (CEC , pp. 1260-1267
    • Dong, W.1    Yao, X.2
  • 9
    • 44949177605 scopus 로고    scopus 로고
    • Unified Eigen analysis on multivariate Gaussian based estimation of distribution algorithms
    • Dong W., and Yao X. Unified Eigen analysis on multivariate Gaussian based estimation of distribution algorithms. International Journal of Information Sciences 178 15 (2008) 3000-3023
    • (2008) International Journal of Information Sciences , vol.178 , Issue.15 , pp. 3000-3023
    • Dong, W.1    Yao, X.2
  • 10
    • 69249244424 scopus 로고    scopus 로고
    • S. Tsutsui, M. Pelikan, D.E. Goldberg, Probabilistic model-building genetic algorithms using marginal histograms in continuous domain, in: Proc. of the KES 2001, 2001, pp. 112-121.
    • S. Tsutsui, M. Pelikan, D.E. Goldberg, Probabilistic model-building genetic algorithms using marginal histograms in continuous domain, in: Proc. of the KES 2001, 2001, pp. 112-121.
  • 11
    • 38849184222 scopus 로고    scopus 로고
    • Histogram-based estimation of distribution algorithm: a competent method for continuous optimization
    • Ding N., Zhou S.D., and Sun Z.Q. Histogram-based estimation of distribution algorithm: a competent method for continuous optimization. Journal of Computer Science and Technology 23 1 (2008) 35-43
    • (2008) Journal of Computer Science and Technology , vol.23 , Issue.1 , pp. 35-43
    • Ding, N.1    Zhou, S.D.2    Sun, Z.Q.3
  • 12
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA
    • S. Baluja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.
    • (1994)
    • Baluja, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.