-
1
-
-
2342591102
-
Analysis
-
D. Tall Ed, Dordrecht, The Netherlands: Kluwer
-
Artigue, M. (1991). Analysis. In D. Tall (Ed.), Advanced mathematical thinking (pp. 167-198). Dordrecht, The Netherlands: Kluwer.
-
(1991)
Advanced mathematical thinking
, pp. 167-198
-
-
Artigue, M.1
-
3
-
-
0002554426
-
Models and archetypes
-
M. Black, Ithaca, NY: Cornell University Press
-
Black, M. (1962b). Models and archetypes. In M. Black, Models and metaphors: Studies in language and philosophy (pp. 219-243). Ithaca, NY: Cornell University Press.
-
(1962)
Models and metaphors: Studies in language and philosophy
, pp. 219-243
-
-
Black, M.1
-
4
-
-
84990623110
-
More about metaphor
-
Black, M. (1977). More about metaphor. Dialectica, 31, 433-457.
-
(1977)
Dialectica
, vol.31
, pp. 433-457
-
-
Black, M.1
-
5
-
-
69249182184
-
How metaphors work: A reply to Donald Davidson
-
Black, M. (1979). How metaphors work: A reply to Donald Davidson. Critical Inquiry, 6, 131-143.
-
(1979)
Critical Inquiry
, vol.6
, pp. 131-143
-
-
Black, M.1
-
6
-
-
69249185309
-
-
Cornu, B. (1991). Limits. InD. Tall (Ed.), Advanced mathematical thinking (pp. 153-166). Dordrecht, The Netherlands: Kluwer.
-
Cornu, B. (1991). Limits. InD. Tall (Ed.), Advanced mathematical thinking (pp. 153-166). Dordrecht, The Netherlands: Kluwer.
-
-
-
-
7
-
-
0343046137
-
Understanding the limit concept: Beginning with a coordinated process schema
-
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process schema. Journal of Mathematical Behavior, 15, 167- 192.
-
(1996)
Journal of Mathematical Behavior
, vol.15
, pp. 167-192
-
-
Cottrill, J.1
Dubinsky, E.2
Nichols, D.3
Schwingendorf, K.4
Thomas, K.5
Vidakovic, D.6
-
8
-
-
0000014423
-
The notion of limit: Some seemingly unavoidable misconception stages
-
Davis, R., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. Journal of Mathematical Behavior, 5,281- 303.
-
(1986)
Journal of Mathematical Behavior
, vol.5
, pp. 281-303
-
-
Davis, R.1
Vinner, S.2
-
9
-
-
85016697527
-
Three approaches to undergraduate calculus instruction: Their nature and potential impact on students' language use and sources of conviction
-
E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds, Research in college mathematics education I pp, Providence, RI: American Mathematical Society
-
Frid, S. ( 1994). Three approaches to undergraduate calculus instruction: Their nature and potential impact on students' language use and sources of conviction. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), CBMS issues in mathematics education: Vol. 4. Research in college mathematics education I (pp. 69-100). Providence, RI: American Mathematical Society.
-
(1994)
CBMS issues in mathematics education
, vol.4
, pp. 69-100
-
-
Frid, S.1
-
10
-
-
0002031441
-
Democratizing access to calculus: New routes to old roots
-
A. H. Schoenfeld Ed, Washington, DC: Mathematical Association of America
-
Kaput, J. ( 1994). Democratizing access to calculus: New routes to old roots. In A. H. Schoenfeld (Ed.), Mathematics and cognitive science (pp. 77-156). Washington, DC: Mathematical Association of America.
-
(1994)
Mathematics and cognitive science
, pp. 77-156
-
-
Kaput, J.1
-
14
-
-
25144504425
-
Students' understanding of functions in calculus courses
-
Monk, G. S. (1994). Students' understanding of functions in calculus courses. Humanistic Mathematics Network Journal, 9, 21-27.
-
(1994)
Humanistic Mathematics Network Journal
, vol.9
, pp. 21-27
-
-
Monk, G.S.1
-
15
-
-
69249186348
-
-
Monk, S. (1992). Students' understanding of a function given by a physical model. In G. Harel & E. Dubinsky (Eds.), MAA notes: 25. The concept of function: Aspects of epistemology and pedagogy (pp. 175-193). Washington, DC: Mathematical Association of America.
-
Monk, S. (1992). Students' understanding of a function given by a physical model. In G. Harel & E. Dubinsky (Eds.), MAA notes: Vol. 25. The concept of function: Aspects of epistemology and pedagogy (pp. 175-193). Washington, DC: Mathematical Association of America.
-
-
-
-
16
-
-
64449088527
-
Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics
-
F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi Eds, Berlin: Springer-Verlag
-
Núñez, R. (2004). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi (Eds.), Embodied artificial intelligence (pp. 54-73). Berlin: Springer-Verlag.
-
(2004)
Embodied artificial intelligence
, pp. 54-73
-
-
Núñez, R.1
-
17
-
-
84928359408
-
-
Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 65-80). Washington, DC: Mathematical Association of America.
-
Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: Vol. 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 65-80). Washington, DC: Mathematical Association of America.
-
-
-
-
18
-
-
84928373279
-
-
Oehrtman, M., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' function understanding. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 27-41). Washington, DC: Mathematical Association of America.
-
Oehrtman, M., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' function understanding. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: Vol. 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 27-41). Washington, DC: Mathematical Association of America.
-
-
-
-
19
-
-
0000881719
-
Students' understanding of differentiation
-
Orton, A. (1983). Students' understanding of differentiation. Educational Studies in Mathematics, 14, 235-250.
-
(1983)
Educational Studies in Mathematics
, vol.14
, pp. 235-250
-
-
Orton, A.1
-
22
-
-
84872521513
-
Calculus students' assimilation of the Riemann Integral into a previously established limit structure
-
T. Lamberg & L. R. Wiest (Eds, Stateline Lake Tahoe, University of Nevada, Reno
-
Sealey, V., & Oehrtman, M. (2007). Calculus students' assimilation of the Riemann Integral into a previously established limit structure. In T. Lamberg & L. R. Wiest (Eds.), Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 78-83). Stateline (Lake Tahoe): University of Nevada, Reno.
-
(2007)
Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education
, pp. 78-83
-
-
Sealey, V.1
Oehrtman, M.2
-
23
-
-
0000935350
-
Humanities students and epistemological obstacles related to limits
-
Sierpinska, A. ( 1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18, 371-397.
-
(1987)
Educational Studies in Mathematics
, vol.18
, pp. 371-397
-
-
Sierpinska, A.1
-
25
-
-
23044518360
-
Mathematical beliefs and conceptual understanding of the limit of a functi on
-
Szydlick, J. (2000). Mathematical beliefs and conceptual understanding of the limit of a functi on. Journal for Research in Mathematics Education, 31, 258-276.
-
(2000)
Journal for Research in Mathematics Education
, vol.31
, pp. 258-276
-
-
Szydlick, J.1
-
27
-
-
0002010056
-
Inconsistencies in the learning of calculus and analysis
-
Tall, D. (1990). Inconsistencies in the learning of calculus and analysis. Focus on Learning Problems in Mathematics, 12(3 & 4), 49-62.
-
(1990)
Focus on Learning Problems in Mathematics
, vol.12
, Issue.3 4
, pp. 49-62
-
-
Tall, D.1
-
28
-
-
0002038327
-
The transition to advanced mathematical thinking: Functions, limits, infinity, and proof
-
D. Grouws Ed, New York: Macmillan
-
Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity, and proof. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495-511). New York: Macmillan.
-
(1992)
Handbook of research on mathematics teaching and learning
, pp. 495-511
-
-
Tall, D.1
-
29
-
-
0347050792
-
Conflicts in the learning of real numbers and limits
-
Tall, D., & Schwarzenberger, R. ( 1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44-49.
-
(1978)
Mathematics Teaching
, vol.82
, pp. 44-49
-
-
Tall, D.1
Schwarzenberger, R.2
-
30
-
-
0000213855
-
Concept image and concept definition in mathematics with particular reference to limits and continuity
-
Tall, D., & Vinner, S. ( 1981 ). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151- 169.
-
(1981)
Educational Studies in Mathematics
, vol.12
, pp. 151-169
-
-
Tall, D.1
Vinner, S.2
-
31
-
-
0000019871
-
Images of rate and operational understanding of the fundamental theorem of calculus
-
Thompson, P. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229-274.
-
(1994)
Educational Studies in Mathematics
, vol.26
, pp. 229-274
-
-
Thompson, P.1
-
32
-
-
0345789447
-
The role of students' intuitions of infinity in teaching the Cantorian Theory
-
D. Tall Ed, Dordrecht, The Netherlands, Kluwer
-
Tirosh, D. (1991). The role of students' intuitions of infinity in teaching the Cantorian Theory. In D. Tall (Ed.), Advanced mathematical thinking (pp. 199-214). Dordrecht, The Netherlands.: Kluwer.
-
(1991)
Advanced mathematical thinking
, pp. 199-214
-
-
Tirosh, D.1
-
33
-
-
69249201211
-
-
Vygotsky, L. ( 1987). The development of scientific concepts in childhood. In R. W. Rieber & A. S. Carton (Eds.), Problems of generalpsychology: 1. The collected works of L. S. Vygotsky (pp. 167-241).New York: Plenum. (Original work published 1934)
-
Vygotsky, L. ( 1987). The development of scientific concepts in childhood. In R. W. Rieber & A. S. Carton (Eds.), Problems of generalpsychology: Vol. 1. The collected works of L. S. Vygotsky (pp. 167-241).New York: Plenum. (Original work published 1934)
-
-
-
-
35
-
-
0035594850
-
Predications of the limit concept: An application of repertory grids
-
Williams, S. (2001). Predications of the limit concept: An application of repertory grids. Journal for Research in Mathematics Education, 32, 341- 367.
-
(2001)
Journal for Research in Mathematics Education
, vol.32
, pp. 341-367
-
-
Williams, S.1
|