메뉴 건너뛰기




Volumn 40, Issue 4, 2009, Pages 396-426

Collapsing dimensions, physical limitation, and other student metaphors for limit concepts

Author keywords

Advanced mathematical thinking; Calculus analysis; Clinical interviews; College mathematics; Grounded theory; Language and mathematics; Qualitative methods

Indexed keywords


EID: 69249198270     PISSN: 00218251     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (66)

References (35)
  • 1
    • 2342591102 scopus 로고
    • Analysis
    • D. Tall Ed, Dordrecht, The Netherlands: Kluwer
    • Artigue, M. (1991). Analysis. In D. Tall (Ed.), Advanced mathematical thinking (pp. 167-198). Dordrecht, The Netherlands: Kluwer.
    • (1991) Advanced mathematical thinking , pp. 167-198
    • Artigue, M.1
  • 3
    • 0002554426 scopus 로고
    • Models and archetypes
    • M. Black, Ithaca, NY: Cornell University Press
    • Black, M. (1962b). Models and archetypes. In M. Black, Models and metaphors: Studies in language and philosophy (pp. 219-243). Ithaca, NY: Cornell University Press.
    • (1962) Models and metaphors: Studies in language and philosophy , pp. 219-243
    • Black, M.1
  • 4
    • 84990623110 scopus 로고
    • More about metaphor
    • Black, M. (1977). More about metaphor. Dialectica, 31, 433-457.
    • (1977) Dialectica , vol.31 , pp. 433-457
    • Black, M.1
  • 5
    • 69249182184 scopus 로고
    • How metaphors work: A reply to Donald Davidson
    • Black, M. (1979). How metaphors work: A reply to Donald Davidson. Critical Inquiry, 6, 131-143.
    • (1979) Critical Inquiry , vol.6 , pp. 131-143
    • Black, M.1
  • 6
    • 69249185309 scopus 로고    scopus 로고
    • Cornu, B. (1991). Limits. InD. Tall (Ed.), Advanced mathematical thinking (pp. 153-166). Dordrecht, The Netherlands: Kluwer.
    • Cornu, B. (1991). Limits. InD. Tall (Ed.), Advanced mathematical thinking (pp. 153-166). Dordrecht, The Netherlands: Kluwer.
  • 8
    • 0000014423 scopus 로고
    • The notion of limit: Some seemingly unavoidable misconception stages
    • Davis, R., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. Journal of Mathematical Behavior, 5,281- 303.
    • (1986) Journal of Mathematical Behavior , vol.5 , pp. 281-303
    • Davis, R.1    Vinner, S.2
  • 9
    • 85016697527 scopus 로고
    • Three approaches to undergraduate calculus instruction: Their nature and potential impact on students' language use and sources of conviction
    • E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds, Research in college mathematics education I pp, Providence, RI: American Mathematical Society
    • Frid, S. ( 1994). Three approaches to undergraduate calculus instruction: Their nature and potential impact on students' language use and sources of conviction. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), CBMS issues in mathematics education: Vol. 4. Research in college mathematics education I (pp. 69-100). Providence, RI: American Mathematical Society.
    • (1994) CBMS issues in mathematics education , vol.4 , pp. 69-100
    • Frid, S.1
  • 10
    • 0002031441 scopus 로고
    • Democratizing access to calculus: New routes to old roots
    • A. H. Schoenfeld Ed, Washington, DC: Mathematical Association of America
    • Kaput, J. ( 1994). Democratizing access to calculus: New routes to old roots. In A. H. Schoenfeld (Ed.), Mathematics and cognitive science (pp. 77-156). Washington, DC: Mathematical Association of America.
    • (1994) Mathematics and cognitive science , pp. 77-156
    • Kaput, J.1
  • 14
    • 25144504425 scopus 로고
    • Students' understanding of functions in calculus courses
    • Monk, G. S. (1994). Students' understanding of functions in calculus courses. Humanistic Mathematics Network Journal, 9, 21-27.
    • (1994) Humanistic Mathematics Network Journal , vol.9 , pp. 21-27
    • Monk, G.S.1
  • 15
    • 69249186348 scopus 로고    scopus 로고
    • Monk, S. (1992). Students' understanding of a function given by a physical model. In G. Harel & E. Dubinsky (Eds.), MAA notes: 25. The concept of function: Aspects of epistemology and pedagogy (pp. 175-193). Washington, DC: Mathematical Association of America.
    • Monk, S. (1992). Students' understanding of a function given by a physical model. In G. Harel & E. Dubinsky (Eds.), MAA notes: Vol. 25. The concept of function: Aspects of epistemology and pedagogy (pp. 175-193). Washington, DC: Mathematical Association of America.
  • 16
    • 64449088527 scopus 로고    scopus 로고
    • Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics
    • F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi Eds, Berlin: Springer-Verlag
    • Núñez, R. (2004). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi (Eds.), Embodied artificial intelligence (pp. 54-73). Berlin: Springer-Verlag.
    • (2004) Embodied artificial intelligence , pp. 54-73
    • Núñez, R.1
  • 17
    • 84928359408 scopus 로고    scopus 로고
    • Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 65-80). Washington, DC: Mathematical Association of America.
    • Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: Vol. 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 65-80). Washington, DC: Mathematical Association of America.
  • 18
    • 84928373279 scopus 로고    scopus 로고
    • Oehrtman, M., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' function understanding. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 27-41). Washington, DC: Mathematical Association of America.
    • Oehrtman, M., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' function understanding. In M. P. Carlson & C. Rasmussen (Eds.), MAA notes: Vol. 73. Making the connection: Research and teaching in undergraduate mathematics (pp. 27-41). Washington, DC: Mathematical Association of America.
  • 19
    • 0000881719 scopus 로고
    • Students' understanding of differentiation
    • Orton, A. (1983). Students' understanding of differentiation. Educational Studies in Mathematics, 14, 235-250.
    • (1983) Educational Studies in Mathematics , vol.14 , pp. 235-250
    • Orton, A.1
  • 23
    • 0000935350 scopus 로고
    • Humanities students and epistemological obstacles related to limits
    • Sierpinska, A. ( 1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18, 371-397.
    • (1987) Educational Studies in Mathematics , vol.18 , pp. 371-397
    • Sierpinska, A.1
  • 25
    • 23044518360 scopus 로고    scopus 로고
    • Mathematical beliefs and conceptual understanding of the limit of a functi on
    • Szydlick, J. (2000). Mathematical beliefs and conceptual understanding of the limit of a functi on. Journal for Research in Mathematics Education, 31, 258-276.
    • (2000) Journal for Research in Mathematics Education , vol.31 , pp. 258-276
    • Szydlick, J.1
  • 27
    • 0002010056 scopus 로고
    • Inconsistencies in the learning of calculus and analysis
    • Tall, D. (1990). Inconsistencies in the learning of calculus and analysis. Focus on Learning Problems in Mathematics, 12(3 & 4), 49-62.
    • (1990) Focus on Learning Problems in Mathematics , vol.12 , Issue.3 4 , pp. 49-62
    • Tall, D.1
  • 28
    • 0002038327 scopus 로고
    • The transition to advanced mathematical thinking: Functions, limits, infinity, and proof
    • D. Grouws Ed, New York: Macmillan
    • Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity, and proof. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495-511). New York: Macmillan.
    • (1992) Handbook of research on mathematics teaching and learning , pp. 495-511
    • Tall, D.1
  • 29
    • 0347050792 scopus 로고
    • Conflicts in the learning of real numbers and limits
    • Tall, D., & Schwarzenberger, R. ( 1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44-49.
    • (1978) Mathematics Teaching , vol.82 , pp. 44-49
    • Tall, D.1    Schwarzenberger, R.2
  • 30
    • 0000213855 scopus 로고
    • Concept image and concept definition in mathematics with particular reference to limits and continuity
    • Tall, D., & Vinner, S. ( 1981 ). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151- 169.
    • (1981) Educational Studies in Mathematics , vol.12 , pp. 151-169
    • Tall, D.1    Vinner, S.2
  • 31
    • 0000019871 scopus 로고
    • Images of rate and operational understanding of the fundamental theorem of calculus
    • Thompson, P. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229-274.
    • (1994) Educational Studies in Mathematics , vol.26 , pp. 229-274
    • Thompson, P.1
  • 32
    • 0345789447 scopus 로고
    • The role of students' intuitions of infinity in teaching the Cantorian Theory
    • D. Tall Ed, Dordrecht, The Netherlands, Kluwer
    • Tirosh, D. (1991). The role of students' intuitions of infinity in teaching the Cantorian Theory. In D. Tall (Ed.), Advanced mathematical thinking (pp. 199-214). Dordrecht, The Netherlands.: Kluwer.
    • (1991) Advanced mathematical thinking , pp. 199-214
    • Tirosh, D.1
  • 33
    • 69249201211 scopus 로고    scopus 로고
    • Vygotsky, L. ( 1987). The development of scientific concepts in childhood. In R. W. Rieber & A. S. Carton (Eds.), Problems of generalpsychology: 1. The collected works of L. S. Vygotsky (pp. 167-241).New York: Plenum. (Original work published 1934)
    • Vygotsky, L. ( 1987). The development of scientific concepts in childhood. In R. W. Rieber & A. S. Carton (Eds.), Problems of generalpsychology: Vol. 1. The collected works of L. S. Vygotsky (pp. 167-241).New York: Plenum. (Original work published 1934)
  • 35
    • 0035594850 scopus 로고    scopus 로고
    • Predications of the limit concept: An application of repertory grids
    • Williams, S. (2001). Predications of the limit concept: An application of repertory grids. Journal for Research in Mathematics Education, 32, 341- 367.
    • (2001) Journal for Research in Mathematics Education , vol.32 , pp. 341-367
    • Williams, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.