메뉴 건너뛰기




Volumn 32, Issue 6, 2009, Pages 1219-1228

A program-based anomaly intrusion detection scheme using multiple detection engines and fuzzy inference

Author keywords

Anomaly intrusion detection; Fuzzy logic; Hidden Markov model; Multiple detection engines; Program intrusion detection

Indexed keywords

ANOMALY INTRUSION DETECTION; DETECTION SCHEME; FALSE POSITIVE; HIGH COSTS; HMM TRAINING; INCREMENTAL TRAINING; INFERENCE MECHANISM; MEMORY REQUIREMENTS; MULTIPLE DETECTION; MULTIPLE DETECTION ENGINES; PROGRAM INTRUSION DETECTION; PROGRAM SYSTEMS; TRAINING TIME;

EID: 68949196337     PISSN: 10848045     EISSN: 10958592     Source Type: Journal    
DOI: 10.1016/j.jnca.2009.05.004     Document Type: Article
Times cited : (101)

References (39)
  • 3
    • 68949182169 scopus 로고    scopus 로고
    • Anderson D, Frivold T, Tamaru A, Valdes A. Next generation intrusion detection expert system (NIDES), Software user's manual, beta-update release. Computer Science Laboratory, SRI International, Menlo Park, CA, USA, Technical Report SRI-CSL-95-0, May 1994.
    • Anderson D, Frivold T, Tamaru A, Valdes A. Next generation intrusion detection expert system (NIDES), Software user's manual, beta-update release. Computer Science Laboratory, SRI International, Menlo Park, CA, USA, Technical Report SRI-CSL-95-0, May 1994.
  • 4
    • 68949182168 scopus 로고    scopus 로고
    • Anderson D, Lunt TF, Javitz H, Tamaru A., Valdes A. Detecting unusual program behaviour using the statistical component of the next-generation intrusion detection expert system (NIDES). Computer Science Laboratory, SRI International, Menlo Park, CA, USA, SRI-CSL-95-06, May 1995.
    • Anderson D, Lunt TF, Javitz H, Tamaru A., Valdes A. Detecting unusual program behaviour using the statistical component of the next-generation intrusion detection expert system (NIDES). Computer Science Laboratory, SRI International, Menlo Park, CA, USA, SRI-CSL-95-06, May 1995.
  • 5
    • 34548145185 scopus 로고    scopus 로고
    • Multi-layer integrated anomaly intrusion detection system for mobile ad hoc networks
    • India, February 22-24
    • Bose S, Bharathimurugan S, Kannan A. Multi-layer integrated anomaly intrusion detection system for mobile ad hoc networks. In: IEEE ICSCN 2007, MIT Campus, India, February 22-24, 2007. p. 360-5.
    • (2007) IEEE ICSCN 2007, MIT Campus , pp. 360-365
    • Bose, S.1    Bharathimurugan, S.2    Kannan, A.3
  • 6
    • 0036588773 scopus 로고    scopus 로고
    • Incorporating soft computing techniques into a probabilistic intrusion detection system
    • Cho S. Incorporating soft computing techniques into a probabilistic intrusion detection system. IEEE Transactions on Systems, Man, and Cybernetics 32 2 (2002)
    • (2002) IEEE Transactions on Systems, Man, and Cybernetics , vol.32 , Issue.2
    • Cho, S.1
  • 7
    • 33751579019 scopus 로고    scopus 로고
    • Improved estimation of hidden Markov model parameters from multiple observation sequences
    • Quebec City, Canada, August
    • Davis RIA, Lovell BC. Improved estimation of hidden Markov model parameters from multiple observation sequences. In: International Conference on Pattern Recognition, Quebec City, Canada, August 2002. p. 168-71.
    • (2002) International Conference on Pattern Recognition , pp. 168-171
    • Davis, R.I.A.1    Lovell, B.C.2
  • 10
    • 33646390798 scopus 로고    scopus 로고
    • Genetic algorithm to improve SVM based network intrusion detection system. Advanced information AINA 2005
    • Dong SK, Nguyen HN, Park JS. Genetic algorithm to improve SVM based network intrusion detection system. Advanced information AINA 2005. In: 19th international conference on networking and applications 2005, vol. 2. p. 155-8.
    • (2005) 19th international conference on networking and applications , vol.2 , pp. 155-158
    • Dong, S.K.1    Nguyen, H.N.2    Park, J.S.3
  • 11
    • 68949188357 scopus 로고    scopus 로고
    • Evers J. FBI: computer crime costs US firms $67bn. 〈http://news.zdnet.co.uk/security/0,1000000189,39248195,00.htm〉. Retrieved on 15 April, 2008.
    • Evers J. FBI: computer crime costs US firms $67bn. 〈http://news.zdnet.co.uk/security/0,1000000189,39248195,00.htm〉. Retrieved on 15 April, 2008.
  • 20
    • 84890861404 scopus 로고    scopus 로고
    • A multi-layer model for anomaly intrusion detection using program sequences of system calls
    • Sydney, Australia, September
    • Hoang X, Hu J, Bertok P. A multi-layer model for anomaly intrusion detection using program sequences of system calls. In: Proceedings of IEEE international conference on network, Sydney, Australia, September 2003a. p. 531-6.
    • (2003) Proceedings of IEEE international conference on network , pp. 531-536
    • Hoang, X.1    Hu, J.2    Bertok, P.3
  • 22
    • 21644438395 scopus 로고    scopus 로고
    • An efficient hidden Markov model training scheme for anomaly intrusion detection of server applications based on system calls
    • Hoang X, Hu J. An efficient hidden Markov model training scheme for anomaly intrusion detection of server applications based on system calls. In: Proceedings of the IEEE international conference on network, November 2004, vol. 2. p. 470-4.
    • (2004) Proceedings of the IEEE international conference on network, November , vol.2 , pp. 470-474
    • Hoang, X.1    Hu, J.2
  • 23
    • 65249107163 scopus 로고    scopus 로고
    • A simple and efficient hidden Markov model scheme for host-based anomaly intrusion detection
    • Hu J., Yu X., Qiu D., and Chen H.H. A simple and efficient hidden Markov model scheme for host-based anomaly intrusion detection. IEEE Network 23 1 (2009)
    • (2009) IEEE Network , vol.23 , Issue.1
    • Hu, J.1    Yu, X.2    Qiu, D.3    Chen, H.H.4
  • 24
    • 33847743856 scopus 로고    scopus 로고
    • Hybrid intrusion detection with weighted signature generation over anomalous Internet episodes
    • Hwang K., Cai M., Chen Y., and Qin M. Hybrid intrusion detection with weighted signature generation over anomalous Internet episodes. IEEE Transactions on Dependable and Secure Computing 4 1 (2007) 41-55
    • (2007) IEEE Transactions on Dependable and Secure Computing , vol.4 , Issue.1 , pp. 41-55
    • Hwang, K.1    Cai, M.2    Chen, Y.3    Qin, M.4
  • 27
    • 68949189907 scopus 로고    scopus 로고
    • Lunt TF, Tamaru A, Gilham F, Jagannathm R, Jalali C, Neumann Javitz HS, Valdes A, Garvey TD. A real-time intrusion detection expert system (IDES). Computer Science Laboratory, SRI International, Menlo Park, CA, USA, Final Technical Report, February 1992.
    • Lunt TF, Tamaru A, Gilham F, Jagannathm R, Jalali C, Neumann PG, Javitz HS, Valdes A, Garvey TD. A real-time intrusion detection expert system (IDES). Computer Science Laboratory, SRI International, Menlo Park, CA, USA, Final Technical Report, February 1992.
  • 30
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: existing solutions and latest technological trends
    • Patcha A., and Park J.M. An overview of anomaly detection techniques: existing solutions and latest technological trends. Computer Networks 51 (2007) 3448-3470
    • (2007) Computer Networks , vol.51 , pp. 3448-3470
    • Patcha, A.1    Park, J.M.2
  • 31
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov model and selected applications in speech recognition
    • Rabiner L. A tutorial on hidden Markov model and selected applications in speech recognition. Proceedings of the IEEE 77 2 (1989)
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2
    • Rabiner, L.1
  • 34
    • 68949174283 scopus 로고    scopus 로고
    • University of New Mexico's Computer Immune Systems Project:, Retrieved on 2005
    • University of New Mexico's Computer Immune Systems Project: 〈http://www.cs.unm.edu/~immsec/systemcalls.htm〉, Retrieved on 2005.
  • 38
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: aggregating one-dependence estimators
    • Webb G.I., Boughton J., and Wang Z. Not so naive Bayes: aggregating one-dependence estimators. Machine Learning 58 1 (2005) 5-24
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.