메뉴 건너뛰기




Volumn 9, Issue , 2009, Pages 177-183

A Concise proof for properties of three functions involving the exponential function?

Author keywords

[No Author keywords available]

Indexed keywords


EID: 68949156248     PISSN: 16072510     EISSN: 16072510     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (17)

References (21)
  • 2
    • 45949094155 scopus 로고    scopus 로고
    • Best constant in an inequality connected with exponential functions, Octogon
    • Ch.-P. Chen and F. Qi, Best constant in an inequality connected with exponential functions, Octogon Math. Mag., 12(2)(2004), 736-737.
    • (2004) Math. Mag , vol.12 , Issue.2 , pp. 736-737
    • Chen, C.-P.1    Qi, F.2
  • 3
    • 68949138240 scopus 로고    scopus 로고
    • nd ed., Problem Books in Mathematics, Springer, New York, 2001.
    • nd ed., Problem Books in Mathematics, Springer, New York, 2001.
  • 4
    • 68949153143 scopus 로고    scopus 로고
    • B.-N. Guo, A.-Q. Liu and F. Qi, Monotonicity and logarithmic convexity of three functions involving exponential function, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 15(4)(2008), 387-392.
    • B.-N. Guo, A.-Q. Liu and F. Qi, Monotonicity and logarithmic convexity of three functions involving exponential function, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 15(4)(2008), 387-392.
  • 5
    • 68949093412 scopus 로고    scopus 로고
    • A simple proof of logarithmic convexity of extended mean values
    • in press; Available online at
    • B.-N. Guo and F. Qi, A simple proof of logarithmic convexity of extended mean values, Numer. Algorithms (2009), in press; Available online at http://dx.doi.org/10.1007/s11075-008-9259-7.
    • (2009) Numer. Algorithms
    • Guo, B.-N.1    Qi, F.2
  • 6
    • 71649085838 scopus 로고    scopus 로고
    • S. Guo and F. Qi, A class of completely monotonic functions related to the remainder of Binet's formula with applications, Tamsui Oxf. J. Math. Sci., 25(1)(2009), in press.
    • S. Guo and F. Qi, A class of completely monotonic functions related to the remainder of Binet's formula with applications, Tamsui Oxf. J. Math. Sci., 25(1)(2009), in press.
  • 8
    • 45949104101 scopus 로고    scopus 로고
    • Monotonicity and logarithmic concavity of two functions involving exponential function
    • A.-Q. Liu, G.-F. Li, B.-N. Guo and F. Qi, Monotonicity and logarithmic concavity of two functions involving exponential function, Internat. J. Math. Ed. Sci. Tech., 39(5)(2008), 686-691.
    • (2008) Internat. J. Math. Ed. Sci. Tech , vol.39 , Issue.5 , pp. 686-691
    • Liu, A.-Q.1    Li, G.-F.2    Guo, B.-N.3    Qi, F.4
  • 9
    • 45949086045 scopus 로고    scopus 로고
    • A monotonicity result of a function involving the exponential function and an application
    • Art. 16, 507-509; Available online at http://www.staff.vu.edu.au/rgmia/v7n3.asp
    • F. Qi, A monotonicity result of a function involving the exponential function and an application, RGMIA Res. Rep. Coll., 7(3)(2004), Art. 16, 507-509; Available online at http://www.staff.vu.edu.au/rgmia/v7n3.asp.
    • (2004) RGMIA Res. Rep. Coll , vol.7 , Issue.3
    • Qi, F.1
  • 10
    • 58549102306 scopus 로고    scopus 로고
    • Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values
    • F. Qi, P. Cerone, S. S. Dragomir and H. M. Srivastava, Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput., 208(1)(2009), 129-133.
    • (2009) Appl. Math. Comput , vol.208 , Issue.1 , pp. 129-133
    • Qi, F.1    Cerone, P.2    Dragomir, S.S.3    Srivastava, H.M.4
  • 14
    • 58149146541 scopus 로고    scopus 로고
    • x: Logarithmic convexity
    • Art. 5; Available online at http://www.staff.vu.edu.au/rgmia/v11n1. asp
    • x: Logarithmic convexity, RGMIA Res. Rep. Coll., 11(1)(2008), Art. 5; Available online at http://www.staff.vu.edu.au/rgmia/v11n1. asp.
    • (2008) RGMIA Res. Rep. Coll , vol.11 , Issue.1
    • Qi, F.1    Guo, B.-N.2
  • 15
    • 13844281523 scopus 로고    scopus 로고
    • F. Qi, Z.-L. Wei and Q. Yang, Generalizations and refinements of Hermite-Hadamard's inequality, Rocky Mountain J. Math., 35(1)(2005), 235-251. RGMIA Res. Rep. Coll., 5(2)(2002), Art. 10, 337-349; Available online at http://www.staff.vu.edu.au/rgmia/v5n2.asp.
    • F. Qi, Z.-L. Wei and Q. Yang, Generalizations and refinements of Hermite-Hadamard's inequality, Rocky Mountain J. Math., 35(1)(2005), 235-251. RGMIA Res. Rep. Coll., 5(2)(2002), Art. 10, 337-349; Available online at http://www.staff.vu.edu.au/rgmia/v5n2.asp.
  • 16
    • 0031176236 scopus 로고    scopus 로고
    • Refinements and extensions of an inequality, II
    • F. Qi and S.-L. Xu, Refinements and extensions of an inequality, II, J. Math. Anal. Appl., 211(2)(1997), 616-620.
    • (1997) J. Math. Anal. Appl , vol.211 , Issue.2 , pp. 616-620
    • Qi, F.1    Xu, S.-L.2
  • 17
    • 22444453218 scopus 로고    scopus 로고
    • x: Inequalities and properties
    • x: Inequalities and properties, Proc. Amer. Math. Soc., 126(11)(1998), 3355-3359.
    • (1998) Proc. Amer. Math. Soc , vol.126 , Issue.11 , pp. 3355-3359
    • Qi, F.1    Xu, S.-L.2
  • 18
    • 68949117311 scopus 로고    scopus 로고
    • Comparisons of two integral inequalities with Hermite-Hadamard-Jensen's integral inequality, Internat
    • F. Qi and M.-L. Yang, Comparisons of two integral inequalities with Hermite-Hadamard-Jensen's integral inequality, Internat. J. Appl. Math. Sci., 3(1)(2006), 83-88.
    • (2006) J. Appl. Math. Sci , vol.3 , Issue.1 , pp. 83-88
    • Qi, F.1    Yang, M.-L.2
  • 19
    • 68949153142 scopus 로고    scopus 로고
    • Octogon Math. Mag., 14(1)(2006), 53-58.
    • (2006) Math. Mag , vol.14 , Issue.1 , pp. 53-58
    • Octogon1
  • 20
    • 68949139491 scopus 로고    scopus 로고
    • Art. 18, 535-540; Available online at http://www.staff.vu.edu.au/rgmia/v8n3.asp
    • RGMIA Res. Rep. Coll., 8(3)(2005), Art. 18, 535-540; Available online at http://www.staff.vu.edu.au/rgmia/v8n3.asp.
    • (2005) RGMIA Res. Rep. Coll , vol.8 , Issue.3
  • 21
    • 68949144317 scopus 로고    scopus 로고
    • Y.-D. Wu and Zh.-H. Zhang, The best constant for an inequality, Octogon Math. Mag., 12(1)(2004), 139-141. RGMIA Res. Rep. Coll., 7(1)(2004), Art. 19; Available online at http://www.staff.vu.edu.au/rgmia/v7n1.asp.
    • Y.-D. Wu and Zh.-H. Zhang, The best constant for an inequality, Octogon Math. Mag., 12(1)(2004), 139-141. RGMIA Res. Rep. Coll., 7(1)(2004), Art. 19; Available online at http://www.staff.vu.edu.au/rgmia/v7n1.asp.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.