메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1841-1847

Rainfall-runoff modelling using genetic programming

Author keywords

Data driven models; Evolutionary algorithms; Genetic programming; Rainfall runoff modelling

Indexed keywords

APPROPRIATE MODELS; BUILDING BLOCKES; COMPLEX MODEL; DATA SETS; DATA-DRIVEN; DATA-DRIVEN MODEL; EVACUATION PROCEDURES; EVOLUTIONARY SEARCH; FUNCTION SETS; FUNCTIONAL FORMS; GOODNESS-OF-FIT MEASURE; HONG-KONG; INPUT AND OUTPUTS; INPUT VARIABLES; LEARNING METHODS; MODEL ACCURACY; MODEL COEFFICIENT; NETWORK STRUCTURES; OPTIMAL STRUCTURES; PEAK DISCHARGE; PHYSICAL CHARACTERISTICS; PHYSICS-BASED; PREDICTION MODEL; RAINFALL-RUNOFF MODELLING; RAINFALL-RUNOFF PROCESS; REGRESSION METHOD; RIVER FLOW; RUNOFF PREDICTION; TIME INTERVAL; TIME VARYING; TIME-CONSUMING TASKS; DATA DRIVEN MODELLING; DATA DRIVEN TECHNIQUE; RAINFALL - RUNOFF MODELLING; SIGNIFICANT VARIABLES; TIME OF CONCENTRATIONS;

EID: 68949124303     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (9)
  • 1
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time series using neural networks
    • Chakraborty, K., Mehrotra, K., Mohan, C. K., and Ranka, S. (1992), Forecasting the behaviour of the multivariate time series using neural networks, Neural Networks, 5: 961-970. (Pubitemid 23581247)
    • (1992) Neural Networks , vol.5 , Issue.6 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 6
  • 7
    • 0003988603 scopus 로고
    • Prentice Hall, Eaglewood Cliffs, NJ, USA
    • Singh, V.P. (1988), Hydrologic Systems. Prentice Hall, Eaglewood Cliffs, NJ, USA.
    • (1988) Hydrologic Systems
    • Singh, V.P.1
  • 8
    • 0035105632 scopus 로고    scopus 로고
    • Modelling Rainfall-Runoff Relationships using Genetic Programming
    • Whigham, P. A. and Crapper, P. F. (2001), Modelling Rainfall-Runoff Relationships using Genetic Programming, Mathematical and Computer Modelling 33: 707-721.
    • (2001) Mathematical and Computer Modelling , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 9
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • DOI 10.1029/1999WR900264
    • Zhang, B., and Govindaraju, S. (2000), Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resources Research 36 (3): 753-762. (Pubitemid 30149761)
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.