-
7
-
-
0004232671
-
-
Princeton University Press, Princeton, NJ
-
H. Berg, Random Walks in Biology (Princeton University Press, Princeton, NJ, 1993).
-
(1993)
Random Walks in Biology
-
-
Berg, H.1
-
11
-
-
3442901055
-
-
10.1103/PhysRevLett.92.255505
-
S. Torquato and D. C. Pham, Phys. Rev. Lett. 92, 255505 (2004); This paper represents the only previous study that has obtained optimal structures for the mean survival time, but these are anisotropic structures. 10.1103/PhysRevLett.92.255505
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 255505
-
-
Torquato, S.1
Pham, D.C.2
-
14
-
-
68949088483
-
-
Specifically, these are the optimal structures (at least to an excellent approximation) when a weighted sum of the effective thermal and electrical conductivities is maximized for the case in which phase 1 is a good thermal conductor but a poor electrical conductor and phase 2 is a poor thermal conductor but a good electrical conductor. The demand that this sum is maximized sets up a competition between the two effective transport properties, and this demand is met by the Schwartz P and D structures. We note that for reasons of mathematical analogy, the optimality of these bicontinuous composites applies to any pair of the following scalar effective properties: electrical conductivity, thermal conductivity, dielectric constant, magnetic permeability, and diffusion coefficient.
-
Specifically, these are the optimal structures (at least to an excellent approximation) when a weighted sum of the effective thermal and electrical conductivities is maximized for the case in which phase 1 is a good thermal conductor but a poor electrical conductor and phase 2 is a poor thermal conductor but a good electrical conductor. The demand that this sum is maximized sets up a competition between the two effective transport properties, and this demand is met by the Schwartz P and D structures. We note that for reasons of mathematical analogy, the optimality of these bicontinuous composites applies to any pair of the following scalar effective properties: electrical conductivity, thermal conductivity, dielectric constant, magnetic permeability, and diffusion coefficient.
-
-
-
-
15
-
-
36348985082
-
-
10.1098/rspa.2007.1884
-
L. Silvestre, Proc. R. Soc. London, Ser. A 463, 2543 (2007); This paper suggests that the minimal surfaces are strictly not optimal even if they are to an excellent approximation. However, as pointed out by this author, this distinction, even if true, is not relevant for practical considerations. Thus, we call them extremal, since they are optimal for all practical purposes. 10.1098/rspa.2007.1884
-
(2007)
Proc. R. Soc. London, Ser. A
, vol.463
, pp. 2543
-
-
Silvestre, L.1
-
16
-
-
0000092187
-
-
10.1002/9780470141267.ch6
-
D. M. Anderson, H. T. Davis, L. E. Scriven, and J. C. C. Nitsche, Adv. Chem. Phys. 77, 337 (1990). 10.1002/9780470141267.ch6
-
(1990)
Adv. Chem. Phys.
, vol.77
, pp. 337
-
-
Anderson, D.M.1
Davis, H.T.2
Scriven, L.E.3
Nitsche, J.C.C.4
-
18
-
-
28844461166
-
-
10.1103/PhysRevE.72.056319
-
Y. Jung and S. Torquato, Phys. Rev. E 72, 056319 (2005). 10.1103/PhysRevE.72.056319
-
(2005)
Phys. Rev. e
, vol.72
, pp. 056319
-
-
Jung, Y.1
Torquato, S.2
-
19
-
-
0035912206
-
-
10.1038/35073544
-
Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A. R. Burns, D. Y. Sasaki, J. Shelnutt, and C. J. Brinker, Nature (London) 410, 913 (2001). 10.1038/35073544
-
(2001)
Nature (London)
, vol.410
, pp. 913
-
-
Lu, Y.1
Yang, Y.2
Sellinger, A.3
Lu, M.4
Huang, J.5
Fan, H.6
Haddad, R.7
Lopez, G.8
Burns, A.R.9
Sasaki, D.Y.10
Shelnutt, J.11
Brinker, C.J.12
-
22
-
-
33645083067
-
-
edited by W. M. Gelbart, A. Ben-Shaul, and D. Roux (Springer-Verlag, New York
-
M. Micelles, Microemulsions, and Monolayers, edited by, W. M. Gelbart, A. Ben-Shaul and, D. Roux, (Springer-Verlag, New York, 1994).
-
(1994)
Microemulsions, and Monolayers
-
-
Micelles, M.1
-
23
-
-
0029156582
-
-
10.1016/0014-5793(95)00660-2
-
T. Landh, FEBS Lett. 369, 13 (1995). 10.1016/0014-5793(95)00660-2
-
(1995)
FEBS Lett.
, vol.369
, pp. 13
-
-
Landh, T.1
-
24
-
-
3042889998
-
-
10.1098/rsta.1996.0086
-
J. Klinowski, A. L. Mackay, and H. Terrones, Philos. Trans. R. Soc. London, Ser. A 354, 1975 (1996). 10.1098/rsta.1996.0086
-
(1996)
Philos. Trans. R. Soc. London, Ser. A
, vol.354
, pp. 1975
-
-
Klinowski, J.1
MacKay, A.L.2
Terrones, H.3
-
27
-
-
68949094145
-
-
A region of space is said to be simply connected if any simple closed surface can be shrunk to a point continuously in the region (i.e., a surface that has the same topology as a sphere). Therefore, a simply connected pore region cannot have any "holes" or "dead ends."
-
A region of space is said to be simply connected if any simple closed surface can be shrunk to a point continuously in the region (i.e., a surface that has the same topology as a sphere). Therefore, a simply connected pore region cannot have any "holes" or "dead ends."
-
-
-
-
28
-
-
0013373878
-
-
10.1103/PhysRevLett.64.2644
-
S. Torquato, Phys. Rev. Lett. 64, 2644 (1990). 10.1103/PhysRevLett.64. 2644
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 2644
-
-
Torquato, S.1
-
29
-
-
68949125358
-
-
For example, for transport within a single infinitely long circular cylindrical tube of radius a, k=τ= a2 /8.
-
For example, for transport within a single infinitely long circular cylindrical tube of radius a, k=τ= a2 /8.
-
-
-
-
32
-
-
0001509919
-
-
10.1103/PhysRevB.39.11833
-
S. B. Lee, I. C. Kim, C. A. Miller, and S. Torquato, Phys. Rev. B 39, 11833 (1989). 10.1103/PhysRevB.39.11833
-
(1989)
Phys. Rev. B
, vol.39
, pp. 11833
-
-
Lee, S.B.1
Kim, I.C.2
Miller, C.A.3
Torquato, S.4
|