메뉴 건너뛰기




Volumn 9, Issue 1, 2009, Pages 905-912

An adaptive neuro-fuzzy inference system approach for prediction of power factor in wind turbines

Author keywords

ANFIS; Energy; Power factor; Wind turbine

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS; ANFIS MODEL; BLADE NUMBERS; ENERGY; INPUT VARIABLES; LEARNING AND TRAINING; MEAN ERRORS; MODEL DEVELOPMENT; MODEL-BASED; OUTPUT VARIABLES; POWER FACTOR; POWER FACTORS; SCHMITZ; TESTING DATA;

EID: 68949117915     PISSN: 13030914     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (18)
  • 3
    • 33745927429 scopus 로고    scopus 로고
    • Assessment of optimum tip speed ratio in wind turbines using artificial neural networks
    • DOI 10.1016/j.energy.2005.09.007, PII S0360544205001817
    • M.A. Yurdusev, R. Ata and N.S. Çetin, "Assessment of optimum tip speed ratio in wind turbines using artificial neural networks", Energy, 2006, 31:1817-1825. (Pubitemid 44041042)
    • (2006) Energy , vol.31 , Issue.12 , pp. 1817-1825
    • Yurdusev, M.A.1    Ata, R.2    Cetin, N.S.3
  • 5
    • 33644548676 scopus 로고    scopus 로고
    • Prediction of wind speed and power in the Central Anatolian region of Turkey by adaptive neuro-fuzzy inference systems (ANFIS)
    • E. Cam and O. Yildiz, "Prediction of wind speed and power in the central Anatolian region of Turkey by adaptive neuro-fuzzy inference systems (ANFIS)", Turkish J. Eng. Env. Sci. 30 2006, pp. 35- 41. (Pubitemid 43291707)
    • (2006) Turkish Journal of Engineering and Environmental Sciences , vol.30 , Issue.1 , pp. 35-41
    • Cam, E.1    Yildiz, O.2
  • 6
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • DOI 10.1016/S0960-1481(99)00125-1, PII S0960148199001251
    • A. Sfetsos, "A comparison of various forecasting techniques applied to mean hourly wind speed time series", Renewable Energy, 21, 2000, pp. 23-35. (Pubitemid 30306417)
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 8
    • 60049089772 scopus 로고    scopus 로고
    • Innovative short-term wind generation prediction techniques
    • IEEE PES, Oct. 2006-Nov.
    • M. Negnevitsky and C.W. Potter, "Innovative short-term wind generation prediction techniques", ⋯Power ⋯Systems ⋯Conference ⋯and Exposition, IEEE PES, Oct. 29, 2006-Nov. 1 2006, pp. 60-65.
    • (2006) Power ⋯systems Conference and Exposition , vol.29 , Issue.1 , pp. 60-65
    • Negnevitsky, M.1    Potter, C.W.2
  • 10
    • 10844238812 scopus 로고    scopus 로고
    • Developing a multipurpose sun tracking system using fuzzy control
    • DOI 10.1016/j.enconman.2004.06.013
    • M. Alata, M.A. Al-Nimr and Y. Qaroush, "Developing a multipurpose sun tracking system using fuzzy control", Energy Conversion and Management, Vol:46, Iss. 7-8, May 2005, pp. 1229-1245. (Pubitemid 40020410)
    • (2005) Energy Conversion and Management , vol.46 , Issue.7-8 , pp. 1229-1245
    • Alata, M.1    Al-Nimr, M.A.2    Qaroush, Y.3
  • 11
    • 47949129190 scopus 로고    scopus 로고
    • Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system
    • In Press, Corrected Proof, Available online 24 October
    • A. Mellit, S.A. Kalogirou, S. Shaari, H. Salhi and A. Hadj Arab, "Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system", Renewable Energy, In Press, Corrected Proof, Available online 24 October 2007.
    • (2007) Renewable Energy
    • Mellit, A.1    Kalogirou, S.A.2    Shaari, S.3    Salhi, H.4    Hadj Arab, A.5
  • 12
    • 22144443524 scopus 로고    scopus 로고
    • Application of fuzzy inference system in the prediction of wave parameters
    • DOI 10.1016/j.oceaneng.2005.02.001, PII S0029801805000533
    • M.H. Kazeminezhad, A. Etemad-Shahidi, and S.J. Mousavi, "Application of fuzzy inference system in the prediction of wave parameters", Ocean Engineering, 32, 2005, pp. 1709-1725. (Pubitemid 40975346)
    • (2005) Ocean Engineering , vol.32 , Issue.14-15 , pp. 1709-1725
    • Kazeminezhad, M.H.1    Etemad-Shahidi, A.2    Mousavi, S.J.3
  • 13
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network- based fuzzy inference system
    • J.S.R. Jang, "ANFIS: Adaptive-Network- based Fuzzy Inference System", IEEE Trans Systems, Man and Cybernetics, 1993; 23(3):665-685.
    • (1993) IEEE Trans Systems, Man and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 15
    • 0003666747 scopus 로고
    • Neural Networks and Fuzzy Systems, A Dynamical Systems Approach
    • Englewood Ciffs.
    • B. Kosko, "Neural Networks and Fuzzy Systems, A Dynamical Systems Approach", Englewood Ciffs., 1991, NJ: Prentice Hall.
    • (1991) NJ: Prentice Hall
    • Kosko, B.1
  • 18
    • 23944506015 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference systems for analysis of internal carotid arterial Doppler signals
    • DOI 10.1016/j.compbiomed.2004.05.004, PII S0010482504000745
    • E.D. Ubeyli and I. Guler, "Adaptive Neuro- Fuzzy Inference Systems for Analysis of Internal Carotid Arterial Doppler", Signals Computers in Biology and Medicine, 2005, 35, pp. 687-702. (Pubitemid 41206728)
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.8 , pp. 687-702
    • Ubeyli, E.D.1    Guler, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.