-
1
-
-
0024360671
-
Phospholamban phosphorylation in intact ventricles: Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation
-
Wegener, A. D., H. K. Simmerman, J. P. Lindemann, and L. R. Jones. 1989. Phospholamban phosphorylation in intact ventricles: Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J. Biol. Chem. 264:11468-11474.
-
(1989)
J. Biol. Chem
, vol.264
, pp. 11468-11474
-
-
Wegener, A.D.1
Simmerman, H.K.2
Lindemann, J.P.3
Jones, L.R.4
-
6
-
-
0038464639
-
Phospholamban: A crucial regulator of cardiac contractility
-
MacLennan, D. H., and E. G. Kranias. 2003. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4:566-577.
-
(2003)
Nat. Rev. Mol. Cell Biol
, vol.4
, pp. 566-577
-
-
MacLennan, D.H.1
Kranias, E.G.2
-
7
-
-
4143073485
-
15N heteronuclear NMR spectroscopy shows four dynamic domains for phospholamaban reconstituted in dodecylphosphocholine micelles
-
15N heteronuclear NMR spectroscopy shows four dynamic domains for phospholamaban reconstituted in dodecylphosphocholine micelles. Biophys. J. 87:1205-1214.
-
(2004)
Biophys. J
, vol.87
, pp. 1205-1214
-
-
Metcalfe, E.E.1
Zamoon, J.2
Thomas, D.D.3
Veglia, G.4
-
10
-
-
13544268372
-
Structure and dynamics of phospholamban in solution and in membrane bilayer: Computer simulations
-
Houndonougbo, Y., K. Kuczera, and G. S. Jas. 2005. Structure and dynamics of phospholamban in solution and in membrane bilayer: computer simulations. Biochemistry. 44:1780-1792.
-
(2005)
Biochemistry
, vol.44
, pp. 1780-1792
-
-
Houndonougbo, Y.1
Kuczera, K.2
Jas, G.S.3
-
11
-
-
17844405054
-
The α-helical propensity of the cytoplasmic domain of phospholamban: A molecular dynamics simulation of the effect of phosphorylation and mutation
-
Paterlini, M. G., and D. D. Thomas. 2005. The α-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation. Biophys. J. 88:3243-3251.
-
(2005)
Biophys. J
, vol.88
, pp. 3243-3251
-
-
Paterlini, M.G.1
Thomas, D.D.2
-
12
-
-
33749323314
-
Structural changes in the cytoplasmic domain of phospholamban by phosphorylation at Ser16: A molecular dynamics study
-
Sugita, Y., N. Miyashita, T. Yoda, M. Ikeguchi, and C. Toyoshima. 2006. Structural changes in the cytoplasmic domain of phospholamban by phosphorylation at Ser16: a molecular dynamics study. Biochemistry. 45:11752-11761.
-
(2006)
Biochemistry
, vol.45
, pp. 11752-11761
-
-
Sugita, Y.1
Miyashita, N.2
Yoda, T.3
Ikeguchi, M.4
Toyoshima, C.5
-
13
-
-
33847025691
-
The role of phosphorylation on the structure and dynamics of phospholamban: A model from molecular simulations
-
Pantano, S., and E. Carafoli. 2007. The role of phosphorylation on the structure and dynamics of phospholamban: a model from molecular simulations. Proteins. 66:930-940.
-
(2007)
Proteins
, vol.66
, pp. 930-940
-
-
Pantano, S.1
Carafoli, E.2
-
14
-
-
0141530952
-
-
Zamoon, J., A. M. and David D. Thomas, and G. Veglia. 2003. NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys. J. 85:2589-2598.
-
Zamoon, J., A. M. and David D. Thomas, and G. Veglia. 2003. NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys. J. 85:2589-2598.
-
-
-
-
15
-
-
15544370248
-
Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban
-
Metcalfe, E., N. Traaseth, and G. Veglia. 2005. Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban. Biochemistry. 44:4386-4396.
-
(2005)
Biochemistry
, vol.44
, pp. 4386-4396
-
-
Metcalfe, E.1
Traaseth, N.2
Veglia, G.3
-
16
-
-
0029557910
-
Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban
-
Adams, P. D., I. T. Arkin, D. M. Engelman, and A. T. Brunger. 1995. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nat. Struct. Mol. Biol. 2:154-162.
-
(1995)
Nat. Struct. Mol. Biol
, vol.2
, pp. 154-162
-
-
Adams, P.D.1
Arkin, I.T.2
Engelman, D.M.3
Brunger, A.T.4
-
17
-
-
0031451335
-
Channels formed by the transmembrane helix of phospholamban: A simulation study
-
Sansom, M. S. P., G. R. Smith, O. S. Smart, and S. O. Smith. 1997. Channels formed by the transmembrane helix of phospholamban: a simulation study. Biophys. Chem. 69:269-281.
-
(1997)
Biophys. Chem
, vol.69
, pp. 269-281
-
-
Sansom, M.S.P.1
Smith, G.R.2
Smart, O.S.3
Smith, S.O.4
-
18
-
-
23344441824
-
The structure of phospholamban pentamer reveals a channel-like architecture in membranes
-
Oxenoid, K., and J. J. Chou. 2005. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc. Natl. Acad. Sci. USA. 102:10870-10875.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 10870-10875
-
-
Oxenoid, K.1
Chou, J.J.2
-
19
-
-
15544368495
-
Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy
-
Robia, S. L., N. C. Flohr, and D. D. Thomas. 2005. Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy. Biochemistry. 44:4302-4311.
-
(2005)
Biochemistry
, vol.44
, pp. 4302-4311
-
-
Robia, S.L.1
Flohr, N.C.2
Thomas, D.D.3
-
20
-
-
35348980142
-
Rotational dynamics of phospholamban determined by multifrequency electron paramagnetic resonance
-
Nesmelov, Y., C. Karim, L. Song, P. Fajer, and D. Thomas. 2007. Rotational dynamics of phospholamban determined by multifrequency electron paramagnetic resonance. Biophys. J. 93:2805-2812.
-
(2007)
Biophys. J
, vol.93
, pp. 2805-2812
-
-
Nesmelov, Y.1
Karim, C.2
Song, L.3
Fajer, P.4
Thomas, D.5
-
21
-
-
35548936929
-
Spectroscopic validation of the pentameric structure of phospholamban
-
Traaseth, N. J., R. Verardi, K. D. Torgersen, C. B. Karim, D. D.Thomas, et al. 2007.Spectroscopic validation of the pentameric structure of phospholamban. Proc. Natl. Acad. Sci. USA. 104:14676-14681.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 14676-14681
-
-
Traaseth, N.J.1
Verardi, R.2
Torgersen, K.D.3
Karim, C.B.4
Thomas, D.D.5
-
22
-
-
27344436659
-
Scalable molecular dynamics with NAMD
-
Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, et al. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781-1802.
-
(2005)
J. Comput. Chem
, vol.26
, pp. 1781-1802
-
-
Phillips, J.C.1
Braun, R.2
Wang, W.3
Gumbart, J.4
Tajkhorshid, E.5
-
23
-
-
0041784950
-
-
MacKerell, Jr., A., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. Evanseck, et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102:3586-3616.
-
MacKerell, Jr., A., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. Evanseck, et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102:3586-3616.
-
-
-
-
24
-
-
3142714765
-
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
-
MacKerrel, A. D., M. Feig, and C. L. Brooks III. 2004. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400-1415.
-
(2004)
J. Comput. Chem
, vol.25
, pp. 1400-1415
-
-
MacKerrel, A.D.1
Feig, M.2
Brooks III, C.L.3
-
26
-
-
36449003554
-
Constant pressure molecular dynamics algorithms
-
Martyna, G. J., D. J. Tobias, and M. L. Klein. 1994. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101:4177-4189.
-
(1994)
J. Chem. Phys
, vol.101
, pp. 4177-4189
-
-
Martyna, G.J.1
Tobias, D.J.2
Klein, M.L.3
-
27
-
-
0035449971
-
Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations
-
Batcho, P. F., D. A. Case, and T. Schlick. 2001. Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 115:4003-4018.
-
(2001)
J. Chem. Phys
, vol.115
, pp. 4003-4018
-
-
Batcho, P.F.1
Case, D.A.2
Schlick, T.3
-
28
-
-
0004016501
-
Comparison of simple potential functions for simulating liquid water
-
Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926-935.
-
(1983)
J. Chem. Phys
, vol.79
, pp. 926-935
-
-
Jorgensen, W.L.1
Chandrasekhar, J.2
Madura, J.D.3
Impey, R.W.4
Klein, M.L.5
-
29
-
-
1642485164
-
Coarse grained model for semiquantitative lipid simulations
-
Marrink, S. J., A. H. de Vries, and A. E. Mark. 2004. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B. 108: 750-760.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 750-760
-
-
Marrink, S.J.1
de Vries, A.H.2
Mark, A.E.3
-
30
-
-
0345098288
-
Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles
-
Marrink, S. J., and A. E. Mark. 2003. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. J. Am. Chem. Soc. 125:15233-15242.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 15233-15242
-
-
Marrink, S.J.1
Mark, A.E.2
-
31
-
-
33644893631
-
Coarse grained protein-lipid model with application to lipoprotein particles
-
Shih, A. Y., A. Arkhipov, P. L. Freddolino, and K. Schulten. 2006. Coarse grained protein-lipid model with application to lipoprotein particles. J. Phys. Chem. B. 110:3674-3684.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 3674-3684
-
-
Shih, A.Y.1
Arkhipov, A.2
Freddolino, P.L.3
Schulten, K.4
-
32
-
-
34547474332
-
The MARTINI forcefield: Coarse grained model for biomolecular simulations
-
Marrink, S. J., H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries. 2007. The MARTINI forcefield: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 111:7812-7824.
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 7812-7824
-
-
Marrink, S.J.1
Risselada, H.J.2
Yefimov, S.3
Tieleman, D.P.4
de Vries, A.H.5
-
34
-
-
0018798032
-
Physicochemical studies of the protein-lipid interactions in melittin-containing micelles
-
Lauterwein, J., C. Bosch, L. Brown, and K. Wuthrich. 1979. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim. Biophys. Acta. 556:244-264.
-
(1979)
Biochim. Biophys. Acta
, vol.556
, pp. 244-264
-
-
Lauterwein, J.1
Bosch, C.2
Brown, L.3
Wuthrich, K.4
-
35
-
-
2142715470
-
Water dynamics and dewetting transitions in the small mechanosensitive channel MscS
-
Anishkin, A., and S. Sukharev. 2004. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86:2883-2895.
-
(2004)
Biophys. J
, vol.86
, pp. 2883-2895
-
-
Anishkin, A.1
Sukharev, S.2
-
36
-
-
0042852135
-
Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations
-
Gullingsrud, J., R. Braun, and K. Schulten. 1999. Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J. Comput. Phys. 151:190-211.
-
(1999)
J. Comput. Phys
, vol.151
, pp. 190-211
-
-
Gullingsrud, J.1
Braun, R.2
Schulten, K.3
-
37
-
-
0030404988
-
HOLE: A program for the analysis of the pore dimensions of ion channel structural models
-
Smart, O. S., J. G. Neduvelil, X. Wang, B. A. Wallace, and M. S. P. Sansom. 1996. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14:354-360.
-
(1996)
J. Mol. Graph
, vol.14
, pp. 354-360
-
-
Smart, O.S.1
Neduvelil, J.G.2
Wang, X.3
Wallace, B.A.4
Sansom, M.S.P.5
-
38
-
-
2942675244
-
Lipid bilayer pressure profiles and mechanosensitive channel gating
-
Gullingsrud, J., and K. Schulten. 2004. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86:3496-3509.
-
(2004)
Biophys. J
, vol.86
, pp. 3496-3509
-
-
Gullingsrud, J.1
Schulten, K.2
-
39
-
-
37649031391
-
Diffuse scattering provides material parameters and electron density profiles of biomembranes
-
Liu, Y., and J. F. Nagle. 2004. Diffuse scattering provides material parameters and electron density profiles of biomembranes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69:040901.
-
(2004)
Phys. Rev. E Stat. Nonlin. Soft Matter Phys
, vol.69
, pp. 040901
-
-
Liu, Y.1
Nagle, J.F.2
-
40
-
-
22244445788
-
Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map
-
Aksimentiev, A., and K. Schulten. 2005. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability and the electrostatic potential map. Biophys. J. 88:3745-3761.
-
(2005)
Biophys. J
, vol.88
, pp. 3745-3761
-
-
Aksimentiev, A.1
Schulten, K.2
-
41
-
-
38949147131
-
Characterization of the resting MscS: Modeling and analysis of the closed bacterial mechanosensitive channel of small conductance
-
Anishkin, A., B. Akitake, and S. Sukharev. 2008. Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys. J. 94:1252-1266.
-
(2008)
Biophys. J
, vol.94
, pp. 1252-1266
-
-
Anishkin, A.1
Akitake, B.2
Sukharev, S.3
-
42
-
-
0030834853
-
Binding pathway of retinal to bacterio-opsin: A prediction by molecular dynamics simulations
-
Isralewitz, B., S. Izrailev, and K. Schulten. 1997. Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 73:2972-2979.
-
(1997)
Biophys. J
, vol.73
, pp. 2972-2979
-
-
Isralewitz, B.1
Izrailev, S.2
Schulten, K.3
-
43
-
-
66249132669
-
Molecular dynamics studies on structure and dynamics of phospholamban monomer and pentamer in membranes
-
Kim, T., J. Lee, and W. Im. 2009. Molecular dynamics studies on structure and dynamics of phospholamban monomer and pentamer in membranes. Proteins. 76:86-88.
-
(2009)
Proteins
, vol.76
, pp. 86-88
-
-
Kim, T.1
Lee, J.2
Im, W.3
-
44
-
-
20444366208
-
Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch
-
Park, S., and S. Opella. 2005. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J. Mol. Biol. 350:310-318.
-
(2005)
J. Mol. Biol
, vol.350
, pp. 310-318
-
-
Park, S.1
Opella, S.2
-
45
-
-
33847058118
-
Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch
-
Yeagle, P., M. Bennett, V. Lemaître, and A. Watts. 2007. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch. Biochimica et Biophysica Acta. 1768:530-537.
-
(2007)
Biochimica et Biophysica Acta
, vol.1768
, pp. 530-537
-
-
Yeagle, P.1
Bennett, M.2
Lemaître, V.3
Watts, A.4
|