메뉴 건너뛰기




Volumn 101, Issue 1, 2009, Pages 71-80

Short-window spectral analysis using AMVAR and multitaper methods: A comparison

Author keywords

AMVAR method; Multitaper method; Spectral analysis

Indexed keywords

AMVAR METHOD; BIVARIATE TIME SERIES; MULTITAPER METHOD; MULTITAPER METHODS; MULTIVARIATE AUTOREGRESSIVE; NOISE PROCESS; ORNSTEIN-UHLENBECK; PATTERN DISCRIMINATION; POWER-SPECTRA; SHORT BURSTS; SHORT DATA WINDOW; SIMULATED SIGNALS; SPECTRAL ANALYSIS; VISUOMOTORS;

EID: 68849109432     PISSN: 03401200     EISSN: 14320770     Source Type: Journal    
DOI: 10.1007/s00422-009-0318-5     Document Type: Article
Times cited : (7)

References (23)
  • 1
    • 0035601828 scopus 로고    scopus 로고
    • Generation of colured noise
    • L Bartosch 2001 Generation of colured noise Int J Modern Phys C 12 851 855
    • (2001) Int J Modern Phys C , vol.12 , pp. 851-855
    • Bartosch, L.1
  • 2
    • 0027382203 scopus 로고
    • Episodic multiregional cortical coherence at multiple frequencies during visual task performance
    • SL Bressler R Coppola R Nakamura 1993 Episodic multiregional cortical coherence at multiple frequencies during visual task performance Nature 366 153 156
    • (1993) Nature , vol.366 , pp. 153-156
    • Bressler, S.L.1    Coppola, R.2    Nakamura, R.3
  • 3
    • 3042795832 scopus 로고    scopus 로고
    • Beta Oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality
    • A Brovelli M Ding A Ledberg Y Chen R Nakamura SL Bressler 2004 Beta Oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality PNAS 101 9849 9854
    • (2004) PNAS , vol.101 , pp. 9849-9854
    • Brovelli, A.1    Ding, M.2    Ledberg, A.3    Chen, Y.4    Nakamura, R.5    Bressler, S.L.6
  • 4
    • 31344435870 scopus 로고    scopus 로고
    • Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data
    • Y Chen SL Bressler M Ding 2006 Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data J Neurosci Methods 150 228 237
    • (2006) J Neurosci Methods , vol.150 , pp. 228-237
    • Chen, Y.1    Bressler, S.L.2    Ding, M.3
  • 5
    • 40749126841 scopus 로고    scopus 로고
    • Estimating Granger causality from Fourier and wavelet transforms of time series data
    • 018701
    • M Dhamala G Rangarajan M Ding 2008 Estimating Granger causality from Fourier and wavelet transforms of time series data Phy Rev Lett 100 018701 1 4
    • (2008) Phy Rev Lett , vol.100 , pp. 1-4
    • Dhamala, M.1    Rangarajan, G.2    Ding, M.3
  • 6
    • 44149095492 scopus 로고    scopus 로고
    • Analyzing information flow in brain networks with nonparametric Granger causality
    • M Dhamala G Rangarajan M Ding 2008 Analyzing information flow in brain networks with nonparametric Granger causality NeuroImage 41 354 362
    • (2008) NeuroImage , vol.41 , pp. 354-362
    • Dhamala, M.1    Rangarajan, G.2    Ding, M.3
  • 7
    • 0034220863 scopus 로고    scopus 로고
    • Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modelling: Data preprocessing, model validation and variability assessment
    • M Ding SL Bressler W Yang H Liang 2000 Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modelling: data preprocessing, model validation and variability assessment Biol Cybern 83 35 45
    • (2000) Biol Cybern , vol.83 , pp. 35-45
    • Ding, M.1    Bressler, S.L.2    Yang, W.3    Liang, H.4
  • 8
    • 0007324878 scopus 로고    scopus 로고
    • The mathematics of Brownian motion and Johnson noise
    • DT Gillespie 1996 The mathematics of Brownian motion and Johnson noise Am J Phys 64 225 240
    • (1996) Am J Phys , vol.64 , pp. 225-240
    • Gillespie, D.T.1
  • 9
    • 0040372277 scopus 로고
    • Spectral analysis of short series-a simulation study
    • CWJ Granger AO Hughes 1968 Spectral analysis of short series-a simulation study J R Stat Soc Ser A 130 83 99
    • (1968) J R Stat Soc ser A , vol.130 , pp. 83-99
    • Granger, C.W.J.1    Hughes, A.O.2
  • 10
    • 68849100977 scopus 로고
    • Holden Day San Francisco
    • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden Day, San Francisco
    • (1968)
    • Jenkins, G.M.1    Watts, D.G.2
  • 11
    • 0035433274 scopus 로고    scopus 로고
    • Evaluating casual relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance
    • M Kaminski M Ding WA Truccolo SL Bressler 2001 Evaluating casual relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance Biol Cybern 85 145 157
    • (2001) Biol Cybern , vol.85 , pp. 145-157
    • Kaminski, M.1    Ding, M.2    Truccolo, W.A.3    Bressler, S.L.4
  • 13
    • 68849128607 scopus 로고
    • Prentice Hall New Jersey
    • Marple SL (1987) Digital spectral analysis with applications. Prentice Hall, New Jersey
    • (1987)
    • Marple, S.L.1
  • 14
    • 0032988822 scopus 로고    scopus 로고
    • Analysis of dynamic brain imaging data
    • PP Mitra B Pesaran 1999 Analysis of dynamic brain imaging data Biophys J 76 691 708
    • (1999) Biophys J , vol.76 , pp. 691-708
    • Mitra, P.P.1    Pesaran, B.2
  • 16
    • 0032584974 scopus 로고    scopus 로고
    • Spectral analysis methods for neurological signals
    • J Muthuswamy NV Thakor 1998 Spectral analysis methods for neurological signals J Neurosci Methods 83 1 14
    • (1998) J Neurosci Methods , vol.83 , pp. 1-14
    • Muthuswamy, J.1    Thakor, N.V.2
  • 17
    • 68849097956 scopus 로고
    • Cambridge University Press New York
    • Percival DB, Walden AT (1993) Spectral analysis for physical applications. Cambridge University Press, New York
    • (1993)
    • Percival, D.B.1    Walden, A.T.2
  • 18
    • 68849084661 scopus 로고    scopus 로고
    • Cambridge University Press Cambridge
    • Percival D, Walden A (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge
    • (2000)
    • Percival, D.1    Walden, A.2
  • 19
    • 84939751170 scopus 로고
    • Prolate spheroidal wavefunctions Fourier analysis and uncertainty
    • D Slepian HO Pollak 1961 Prolate spheroidal wavefunctions Fourier analysis and uncertainty I Bell Syst Tech J 40 43 63
    • (1961) I Bell Syst Tech J , vol.40 , pp. 43-63
    • Slepian, D.1    Pollak, H.O.2
  • 20
    • 0032585001 scopus 로고    scopus 로고
    • A comparison of fast fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data
    • JM Spyers-Ashby PG Bain SJ Roberts 1998 A comparison of fast fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data J Neurosci Methods 83 35 43
    • (1998) J Neurosci Methods , vol.83 , pp. 35-43
    • Spyers-Ashby, J.M.1    Bain, P.G.2    Roberts, S.J.3
  • 21
    • 0020189541 scopus 로고
    • Spectrum estimation and harmonic analysis
    • DJ Thomson 1982 Spectrum estimation and harmonic analysis Proc IEEE 70 1055 1096
    • (1982) Proc IEEE , vol.70 , pp. 1055-1096
    • Thomson, D.J.1
  • 22
    • 15744391288 scopus 로고    scopus 로고
    • A unified view of multitaper multivariate spectral estimation
    • AT Walden 2000 A unified view of multitaper multivariate spectral estimation Biometrika 87 767 788
    • (2000) Biometrika , vol.87 , pp. 767-788
    • Walden, A.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.