-
1
-
-
0002809516
-
A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing
-
H. Niederreiter, P. Hellekalek, g. Larcher, P. Zinterhof, eds Springer-Verlag, new York
-
Acworth P., M. Broadie, P. Glasserman. 1998. A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. H. Niederreiter, P. Hellekalek, G. Larcher, P. Zinterhof, eds. Monte Carlo and Quasi-Monte Carlo Methods 1996. Springer-Verlag, New York, 1-18.
-
(1998)
Monte Carlo and quasi-Monte Carlo methods 1996.
, pp. 1-18
-
-
Acworth, P.1
Broadie, M.2
Glasserman., P.3
-
2
-
-
0033696487
-
Path generation for quasi-Monte Carlo simulation of mortgage-backed securities
-
Åkesson F., J. P. Lehoczy. 2000. Path generation for quasi-Monte Carlo simulation of mortgage-backed securities. Management Sci. 46(9) 1171-1187.
-
(2000)
Management Sci.
, vol.46
, Issue.9
, pp. 1171-1187
-
-
Åkesson, F.1
Lehoczy., J.P.2
-
3
-
-
0003008716
-
Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension
-
Caflisch R. E., W. Morokoff, A. Owen. 1997. Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. J. Comput. Finance 1(1) 27-46.
-
(1997)
J. Comput. finance
, vol.1
, Issue.1
, pp. 27-46
-
-
Caflisch, R.E.1
Morokoff, W.2
Owen., A.3
-
4
-
-
35348915359
-
American options and the LSM algorithm: Quasi-random sequences and Brownian bridges
-
Chaudhary S. K. 2005. American options and the LSM algorithm: Quasi-random sequences and Brownian bridges. J. Comput. Finance 8(4) 101-115.
-
(2005)
J. Comput. finance
, vol.8
, Issue.4
, pp. 101-115
-
-
Chaudhary, S.K.1
-
6
-
-
0036923590
-
Enhanced quasi-Monte Carlo methods with dimension reduction
-
E. Yucesan, c. H. Chen, J. L. Snowdon, J. m. Charnes, eds. IEEE Press, Piscataway, NJ
-
Imai J., K. S. Tan. 2002. Enhanced quasi-Monte Carlo methods with dimension reduction. E. Yucesan, C. H. Chen, J. L. Snowdon, J. M. Charnes, eds. Proc. 2002 Winter Simulation Conf., IEEE Press, Piscataway, NJ, 1502-1510.
-
(2002)
Proc. 2002 Winter Simulation Conf.
, pp. 1502-1510
-
-
Imai, J.1
Tan., K.S.2
-
7
-
-
0000781839
-
Quasi-Monte Carlo methods in Numerical finance
-
Joy C., P. Boyle, K. S. Tan. 1996. Quasi-Monte Carlo methods in numerical finance. Management Sci. 42(6) 926-938.
-
(1996)
Management Sci.
, vol.42
, Issue.6
, pp. 926-938
-
-
Joy, C.1
Boyle, P.2
Tan., K.S.3
-
8
-
-
17744370571
-
Quasi-Monte Carlo methods in finance
-
R. G. Ingalls, M. D. Rossetti, J. S. Smith, B. A. Peters, eds IEEE Press, Piscataway, NJ
-
L'Ecuyer P. 2004. Quasi-Monte Carlo methods in finance. R. G. Ingalls, M. D. Rossetti, J. S. Smith, B. A. Peters, eds. Proc. 2004 Winter Simulation Conf., IEEE Press, Piscataway, NJ, 1645-1655.
-
(2004)
Proc. 2004 Winter Simulation Conf.
, pp. 1645-1655
-
-
L'Ecuyer, P.1
-
9
-
-
40749108951
-
New Brownian bridge in quasi-Monte Carlo methods for computational finance.
-
Lin J., X. Wang. 2008. New Brownian bridge in quasi-Monte Carlo methods for computational finance. J. Complexity 24(2) 109-133.
-
(2008)
J. Complexity
, vol.24
, Issue.2
, pp. 109-133
-
-
Lin, J.1
Wang., X.2
-
10
-
-
33745668483
-
Estimating mean dimensionality of analysis of variance decompositions
-
Liu R., A. Owen. 2006. Estimating mean dimensionality of analysis of variance decompositions. J. Amer. Statist. Assoc. 101(474) 712-721.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, Issue.474
, pp. 712-721
-
-
Liu, R.1
Owen, A.2
-
11
-
-
0035578679
-
Valuing American options by simulation: A simple least-squares approach
-
Longstaff F. A., E. S. Schwartz. 2001. Valuing American options by simulation: A simple least-squares approach. Rev. Financial Stud. 14 113-148.
-
(2001)
Rev. financial Stud.
, vol.14
, pp. 113-148
-
-
Longstaff, F.A.1
Schwartz., E.S.2
-
12
-
-
0032303389
-
Generating Quasi-random paths for stochastic processes
-
Morokoff W. J. 1998. Generating quasi-random paths for stochastic processes. SIAM Rev. 40(4) 765-788.
-
(1998)
SIAM Rev.
, vol.40
, Issue.4
, pp. 765-788
-
-
Morokoff, W.J.1
-
13
-
-
0001563525
-
Quasi-random sequences and their discrepancies
-
Morokoff W. J., R. E. Caflisch. 1994. Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput. 15(6) 1251-1279.
-
(1994)
SIAM J. Sci. Comput.
, vol.15
, Issue.6
, pp. 1251-1279
-
-
Morokoff, W.J.1
Caflisch., R.E.2
-
14
-
-
0002622180
-
Smoothness and dimension reduction in quasi-Monte Carlo methods
-
Moskowitz B., R. E. Caflisch. 1996. Smoothness and dimension reduction in quasi-Monte Carlo methods. Math. Comput. Modelling 23(8-9) 37-54.
-
(1996)
Math. Comput. Modelling
, vol.23
, Issue.8-9
, pp. 37-54
-
-
Moskowitz, B.1
Caflisch., R.E.2
-
16
-
-
0038713193
-
The dimension distribution, and quadrature test functions
-
Owen A. B. 2003. The dimension distribution, and quadrature test functions. Statistica Sinica 13 1-17.
-
(2003)
Statistica Sinica
, vol.13
, pp. 1-17
-
-
Owen, A.B.1
-
17
-
-
0029692966
-
Faster valuation of financial derivatives
-
Paskov S. H., J. F. Traub. 1995. Faster valuation of financial derivatives. J. Portfolio Management 22(1) 113-120.
-
(1995)
J. Portfolio Management
, vol.22
, Issue.1
, pp. 113-120
-
-
Paskov, S.H.1
Traub., J.F.2
-
18
-
-
0002522806
-
When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?
-
Sloan I. H., H. Woźniakowski. 1998. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14(1) 1-33.
-
(1998)
J. Complexity
, vol.14
, Issue.1
, pp. 1-33
-
-
Sloan, I.H.1
Wozniakowski., H.2
-
19
-
-
1242299745
-
Finite-order weights imply tractability of multivariate integration
-
Sloan I. H., X. Wang, H. Woźniakowski. 2004. Finite-order weights imply tractability of multivariate integration. J. Complexity 20(1) 46-74.
-
(2004)
J. Complexity
, vol.20
, Issue.1
, pp. 46-74
-
-
Sloan, I.H.1
Wang, X.2
Wozniakowski., H.3
-
20
-
-
0001352321
-
On the distribution of points in a cube and the approximate evaluation of integrals
-
Sobol', I. M. 1967. On the distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisli. Mat. i Mat. Fiz. 7 784-802.
-
(1967)
Zh. Vychisli. Mat. i Mat. Fiz
, vol.7
, pp. 784-802
-
-
Sobol, I.M.1
-
21
-
-
10444234762
-
Uniformly distributed sequences with additional uniform properties
-
Sobol', I. M. 1976. Uniformly distributed sequences with additional uniform properties. Zh. Vychisli. Mat. i Mat. Fiz. 16 1332-1337.
-
(1976)
Zh. Vychisli. Mat. i Mat. Fiz.
, vol.16
, pp. 1332-1337
-
-
Sobol, I.M.1
-
22
-
-
0000760143
-
Sensitivity estimates for nonlinear mathematical models
-
Sobol', I. M. 1993. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Experiments 1 407-414.
-
(1993)
Math. Model. Comput. experiments
, vol.1
, pp. 407-414
-
-
Sobol, I.M.1
-
23
-
-
33847024936
-
On the effects of dimension reduction techniques on high-dimensional problems in finance
-
Wang X. 2006. On the effects of dimension reduction techniques on high-dimensional problems in finance. Oper. Res. 54(6) 1063-1078.
-
(2006)
Oper. Res.
, vol.54
, Issue.6
, pp. 1063-1078
-
-
Wang, X.1
-
24
-
-
41449087210
-
Constructing robust good lattice rules for computational finance
-
Wang X. 2007. Constructing robust good lattice rules for computational finance. SIAM J. Sci. Comput. 29(2) 598-621.
-
(2007)
SIAM J. Sci. Comput.
, vol.29
, Issue.2
, pp. 598-621
-
-
Wang, X.1
-
25
-
-
0037389675
-
The effective dimensions and quasi-Monte Carlo integration
-
Wang X., K.-T. Fang. 2003. The effective dimensions and quasi-Monte Carlo integration. J. Complexity 19 101-124.
-
(2003)
J. Complexity
, vol.19
, pp. 101-124
-
-
Wang, X.1
Fang., K.-T.2
-
26
-
-
33144490090
-
Why are high-dimensional finance problems often of low effective dimension?
-
Wang X., I. H. Sloan. 2005. Why are high-dimensional finance problems often of low effective dimension? SIAM J. Sci. Comput. 27(1) 159-183.
-
(2005)
SIAM J. Sci. Comput.
, vol.27
, Issue.1
, pp. 159-183
-
-
Wang, X.1
Sloan., I.H.2
-
27
-
-
33947249114
-
Efficient weighted lattice rules with application to finance
-
Wang X., I. H. Sloan. 2006. Efficient weighted lattice rules with application to finance. SIAM J. Sci. Comput. 28 728-750.
-
(2006)
SIAM J. Sci. Comput.
, vol.28
, pp. 728-750
-
-
Wang, X.1
Sloan., I.H.2
-
28
-
-
35348825712
-
Brownian bridge and principal component analysis: Towards removing the curse of dimensionality
-
Wang X., I. H. Sloan. 2007. Brownian bridge and principal component analysis: Towards removing the curse of dimensionality. IMA J. Numer. Anal. 27(4) 631-654.
-
(2007)
IMA J. Numer. Anal.
, vol.27
, Issue.4
, pp. 631-654
-
-
Wang, X.1
Sloan., I.H.2
-
29
-
-
38549165819
-
Low discrepancy sequences in high dimensions: How well are their projections distributed?
-
Wang X., I. H. Sloan. 2008. Low discrepancy sequences in high dimensions: How well are their projections distributed? J. Comput. Appl. Math. 213(2) 366-386.
-
(2008)
J. Comput. Appl. Math.
, vol.213
, Issue.2
, pp. 366-386
-
-
Wang, X.1
Sloan., I.H.2
|