메뉴 건너뛰기




Volumn 5517 LNCS, Issue PART 1, 2009, Pages 877-885

Artificial neural network based algorithm for biomolecular interactions modeling

Author keywords

Artificial neural networks; Breast cancer; Interactions; Interactome; Metastasis

Indexed keywords

ARTIFICIAL NEURAL NETWORKS; BREAST CANCER; INTERACTIONS; INTERACTOME; METASTASIS;

EID: 68749086400     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02478-8_110     Document Type: Conference Paper
Times cited : (15)

References (23)
  • 3
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's; functional organization
    • Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell's; functional organization. Nat. Rev. Genet. 5(2), 101-113 (2004)
    • (2004) Nat. Rev. Genet , vol.5 , Issue.2 , pp. 101-113
    • Barabási, A.L.1    Oltvai, Z.N.2
  • 4
    • 25144479967 scopus 로고    scopus 로고
    • Inferring protein-protein interactions through high-throughput interaction data from diverse organisms
    • Liu, Y., Liu, N., Zhao, H.: Inferring protein-protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics 21(15), 3279-3285 (2005)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3279-3285
    • Liu, Y.1    Liu, N.2    Zhao, H.3
  • 6
    • 0142059836 scopus 로고    scopus 로고
    • Protein complexes and functional modules in molecular networks
    • Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100(21), 12123-12128 (2003)
    • (2003) PNAS , vol.100 , Issue.21 , pp. 12123-12128
    • Spirin, V.1    Mirny, L.A.2
  • 7
    • 34247586171 scopus 로고    scopus 로고
    • Deciphering Protein-Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners
    • Shoemaker, B.A., Panchenko, A.R.: Deciphering Protein-Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners. PLoS Comput. Biol. 3(4), e43 (2007)
    • (2007) PLoS Comput. Biol , vol.3 , Issue.4
    • Shoemaker, B.A.1    Panchenko, A.R.2
  • 8
    • 0033669189 scopus 로고    scopus 로고
    • A network of protein-protein interactions in yeast
    • Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in yeast. Nat. Biotechnol. 18(12), 1257-1261 (2000)
    • (2000) Nat. Biotechnol , vol.18 , Issue.12 , pp. 1257-1261
    • Schwikowski, B.1    Uetz, P.2    Fields, S.3
  • 9
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modeling
    • S
    • Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modeling. BMC Bioinformatics 8, S9 (2007)
    • (2007) BMC Bioinformatics , vol.8 , pp. 9
    • Schlitt, T.1    Brazma, A.2
  • 10
    • 33846013249 scopus 로고    scopus 로고
    • Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks
    • Hart, C.E., Mjolsness, E., Wold, B.J.: Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks. PLoS Comput Biol 2(12), 1592-1607 (2006)
    • (2006) PLoS Comput Biol , vol.2 , Issue.12 , pp. 1592-1607
    • Hart, C.E.1    Mjolsness, E.2    Wold, B.J.3
  • 11
    • 36248944068 scopus 로고    scopus 로고
    • Inference of Genetic Regulatory Networks with Recurrent Neural Network Models Using Particle Swarm Optimization
    • Xu, R., Wunsch, D.C., Frank, R.L.: Inference of Genetic Regulatory Networks with Recurrent Neural Network Models Using Particle Swarm Optimization. Computational Biology and Bioinformatics 4(4), 681-692 (2007)
    • (2007) Computational Biology and Bioinformatics , vol.4 , Issue.4 , pp. 681-692
    • Xu, R.1    Wunsch, D.C.2    Frank, R.L.3
  • 13
    • 19544377389 scopus 로고    scopus 로고
    • Classification of bacterial species from proteomic data using combinatorial approaches incorporating artificial neural networks, cluster analysis and principal components analysis
    • Lancashire, L., Schmid, O., Shah, H., Ball, G.: Classification of bacterial species from proteomic data using combinatorial approaches incorporating artificial neural networks, cluster analysis and principal components analysis. Bioinformatics 21(10), 2191-2199 (2005)
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2191-2199
    • Lancashire, L.1    Schmid, O.2    Shah, H.3    Ball, G.4
  • 14
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: A systematic review
    • Lisboa, P.J., Taktak, A.F.: The use of artificial neural networks in decision support in cancer: A systematic review. Neural Networks 19(4), 408-415 (2006)
    • (2006) Neural Networks , vol.19 , Issue.4 , pp. 408-415
    • Lisboa, P.J.1    Taktak, A.F.2
  • 15
    • 44349110097 scopus 로고    scopus 로고
    • Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach
    • Lancashire, L., Rees, R.C., Ball, G.R.: Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach. Artif. Intell. Med. 43(2), 99-111 (2008)
    • (2008) Artif. Intell. Med , vol.43 , Issue.2 , pp. 99-111
    • Lancashire, L.1    Rees, R.C.2    Ball, G.R.3
  • 18
    • 0043123069 scopus 로고    scopus 로고
    • Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: Association with treatment outcome
    • Span, P.N., Bussink, J., Manders, P., Beex, L.V., Sweep, C.G.: Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: association with treatment outcome. British Journal of Cancer 89(2), 271-276 (2003)
    • (2003) British Journal of Cancer , vol.89 , Issue.2 , pp. 271-276
    • Span, P.N.1    Bussink, J.2    Manders, P.3    Beex, L.V.4    Sweep, C.G.5
  • 19
    • 0037598685 scopus 로고    scopus 로고
    • Retinoic Acid Differentially Regulates Cancer Cell Proliferation via Dose-Dependent Modulation of the Mitogen-Activated Protein Kinase Pathway
    • Crowe, D.L., Kim, R., Chandraratna, R.A.S.: Retinoic Acid Differentially Regulates Cancer Cell Proliferation via Dose-Dependent Modulation of the Mitogen-Activated Protein Kinase Pathway. Molecular Cancer Research 1, 532-540 (2003)
    • (2003) Molecular Cancer Research , vol.1 , pp. 532-540
    • Crowe, D.L.1    Kim, R.2    Chandraratna, R.A.S.3
  • 20
    • 6944243773 scopus 로고    scopus 로고
    • Prognostic Predictor with Multiple Fuzzy Neural Models Using Expression Profiles from DNA Microarray for Métastases of Breast Cancer
    • Takahashi, H., Masuda, K., Ando, T., Kobayashi, T., and Honda, H.: Prognostic Predictor with Multiple Fuzzy Neural Models Using Expression Profiles from DNA Microarray for Métastases of Breast Cancer. Journal of Bioscience and Bioengineering, 98(3), 193-199, (2004)
    • (2004) Journal of Bioscience and Bioengineering , vol.98 , Issue.3 , pp. 193-199
    • Takahashi, H.1    Masuda, K.2    Ando, T.3    Kobayashi, T.4    Honda, H.5
  • 21
    • 21344455515 scopus 로고    scopus 로고
    • The Myc Target Gene JPO1/CDCA7 Is Frequently Overexpressed in Human Tumors and Has Limited Transforming Activity In vivo
    • Osthus, R.C., Karim, B., Prescott, J.E., Smith, B.D., McDevitt, M., Huso, D.L., Dang, C.V.: The Myc Target Gene JPO1/CDCA7 Is Frequently Overexpressed in Human Tumors and Has Limited Transforming Activity In vivo. Cancer Research 65, 5620-5627 (2005)
    • (2005) Cancer Research , vol.65 , pp. 5620-5627
    • Osthus, R.C.1    Karim, B.2    Prescott, J.E.3    Smith, B.D.4    McDevitt, M.5    Huso, D.L.6    Dang, C.V.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.