메뉴 건너뛰기




Volumn 43, Issue 4, 2009, Pages 409-429

Incomplete data in clinical studies: Analysis, sensitivity, and sensitivity analysis

Author keywords

Linear mixed model; Missing at random; Missing completely at random; Non future dependence; Pattern mixture model; Selection model; Shared parameter model

Indexed keywords

ARTICLE; CLINICAL STUDY; DATA ANALYSIS; MEDICAL RECORD; ONYCHOMYCOSIS; PRIORITY JOURNAL; SENSITIVITY ANALYSIS;

EID: 68549122745     PISSN: 00928615     EISSN: None     Source Type: Journal    
DOI: 10.1177/009286150904300404     Document Type: Article
Times cited : (11)

References (71)
  • 1
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika. 1976;63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 2
    • 10644222277 scopus 로고    scopus 로고
    • Analyzing incomplete longitudinal clinical trial data
    • Molenberghs G, Thijs H, Jansen I, et al. Analyzing incomplete longitudinal clinical trial data. Biostatistics. 2004;5:445-464.
    • (2004) Biostatistics , vol.5 , pp. 445-464
    • Molenberghs, G.1    Thijs, H.2    Jansen, I.3
  • 6
    • 84950421496 scopus 로고
    • Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data
    • Robins JM, Rotnitzky A, Zhao LP. Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. J Am Stat Assoc. 1995;90:106-121.
    • (1995) J Am Stat Assoc , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 7
    • 0032264836 scopus 로고    scopus 로고
    • Semi-parametric regression for repeated outcomes with nonignorable nonresponse
    • Robins JM, Rotnitzky A, Scharfstein DO. Semi-parametric regression for repeated outcomes with nonignorable nonresponse. J Am Stat Assoc. 1998;93:1321-1339.
    • (1998) J Am Stat Assoc , vol.93 , pp. 1321-1339
    • Robins, J.M.1    Rotnitzky, A.2    Scharfstein, D.O.3
  • 8
    • 68549134609 scopus 로고    scopus 로고
    • Formal and informal model selection with incomplete data
    • Molenberghs G, Verbeke G, Beunckens C. Formal and informal model selection with incomplete data. Stat Sci. 2007.
    • (2007) Stat Sci
    • Molenberghs, G.1    Verbeke, G.2    Beunckens, C.3
  • 12
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis
    • with discussion
    • Diggle PJ, Kenward MG. Informative drop-out in longitudinal data analysis (with discussion). Appl Stat. 1994;43:49-93.
    • (1994) Appl Stat , vol.43 , pp. 49-93
    • Diggle, P.J.1    Kenward, M.G.2
  • 13
    • 1542341537 scopus 로고    scopus 로고
    • Pattern-mixture models with proper time dependence
    • Kenward MG, Molenberghs G, Thijs H. Pattern-mixture models with proper time dependence. Biometrika. 2003;90:53-71.
    • (2003) Biometrika , vol.90 , pp. 53-71
    • Kenward, M.G.1    Molenberghs, G.2    Thijs, H.3
  • 14
    • 0029048659 scopus 로고
    • Logistic regression with incompletely observed categorical covariates - Investigating the sensitivity against violation of the missing at random assumption
    • Vach W, Blettner M. Logistic regression with incompletely observed categorical covariates - investigating the sensitivity against violation of the missing at random assumption. Stat Med. 1995;12:1315-1330.
    • (1995) Stat Med , vol.12 , pp. 1315-1330
    • Vach, W.1    Blettner, M.2
  • 15
    • 0002627582 scopus 로고    scopus 로고
    • Inference from non-random samples
    • with discussion
    • Copas JB, Li HG. Inference from non-random samples (with discussion). J R Stat Soc B. 1997;59:55-96.
    • (1997) J R Stat Soc B , vol.59 , pp. 55-96
    • Copas, J.B.1    Li, H.G.2
  • 16
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models
    • with discussion.
    • Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). J Am Stat Assoc. 1999;94:1096-1146.
    • (1999) J Am Stat Assoc , vol.94 , pp. 1096-1146
    • Scharfstein, D.O.1    Rotnitzky, A.2    Robins, J.M.3
  • 17
    • 0029890420 scopus 로고    scopus 로고
    • A 12-week treatment for dermatophyte toe onychomycosis: Terbinafine 250mg/day vs. itraconazole 200mg/day - A double-blind comparative trial
    • De Backer M, De Keyser P, De Vroey C, Lesaffre E. A 12-week treatment for dermatophyte toe onychomycosis: terbinafine 250mg/day vs. itraconazole 200mg/day - a double-blind comparative trial. Br J Dermatol. 1996;134:16-17.
    • (1996) Br J Dermatol , vol.134 , pp. 16-17
    • De Backer, M.1    De Keyser, P.2    De Vroey, C.3    Lesaffre, E.4
  • 18
    • 0026507441 scopus 로고
    • Prevalence of dermatophyte onychomycosis in the United Kingdom: Results of an omnibus survey
    • Roberts DT. Prevalence of dermatophyte onychomycosis in the United Kingdom: results of an omnibus survey. Br J Dermatol. 1992;126 (Suppl. 39): 23-27.
    • (1992) Br J Dermatol , vol.126 , Issue.SUPPL. 39 , pp. 23-27
    • Roberts, D.T.1
  • 20
    • 84950452119 scopus 로고
    • Modelling the drop-out mechanism in repeated-measures studies
    • Little RJA. Modelling the drop-out mechanism in repeated-measures studies. J Am Stat Assoc. 1995;90:1112-1121.
    • (1995) J Am Stat Assoc , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 22
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little RJA. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc. 1993;88:125-134.
    • (1993) J Am Stat Assoc , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 23
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little RJA. A class of pattern-mixture models for normal incomplete data. Biometrika. 1994;81:471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 24
    • 0023779040 scopus 로고
    • Analysing changes in the presence of informative right censoring caused by death and withdrawal
    • Wu MC, Bailey KR. Analysing changes in the presence of informative right censoring caused by death and withdrawal. Stat Med. 1988;7:337-346.
    • (1988) Stat Med , vol.7 , pp. 337-346
    • Wu, M.C.1    Bailey, K.R.2
  • 25
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
    • Wu MC, Bailey KR. Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics. 1989;45:939-955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2
  • 26
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring process
    • Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring process. Biometrics. 1988;44:175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 27
    • 15044358532 scopus 로고    scopus 로고
    • Multiple imputation for model checking: Completed-data plots with missing and latent data
    • Gelman A, Van Mechelen I, Verbeke G, Heitjan DF, Meulders M. Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics. 2005;61:74-85.
    • (2005) Biometrics , vol.61 , pp. 74-85
    • Gelman, A.1    Van Mechelen, I.2    Verbeke, G.3    Heitjan, D.F.4    Meulders, M.5
  • 29
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • with discussion
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc B. 1977;39:1-38.
    • (1977) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 31
    • 0000993483 scopus 로고
    • Ignorability and coarse data
    • Heitjan DF, Rubin DB. Ignorability and coarse data. Ann Stat. 1991;19:2244-2253.
    • (1991) Ann Stat , vol.19 , pp. 2244-2253
    • Heitjan, D.F.1    Rubin, D.B.2
  • 32
    • 34848847168 scopus 로고    scopus 로고
    • Impact of nonignorable coarsening on Bayesian inference
    • Zhang J, Heitjan DF. Impact of nonignorable coarsening on Bayesian inference. Biostatistics. 2007;8:722-743.
    • (2007) Biostatistics , vol.8 , pp. 722-743
    • Zhang, J.1    Heitjan, D.F.2
  • 34
    • 0037531799 scopus 로고    scopus 로고
    • The use of score tests for inference on variance components
    • Verbeke G, Molenberghs G. The use of score tests for inference on variance components. Biometrics. 2003;59:254-262.
    • (2003) Biometrics , vol.59 , pp. 254-262
    • Verbeke, G.1    Molenberghs, G.2
  • 35
    • 33846889740 scopus 로고    scopus 로고
    • Likelihood ratio, score, and Wald tests in a constrained parameter space
    • Molenberghs G, Verbeke G. Likelihood ratio, score, and Wald tests in a constrained parameter space. Am Stat. 2007;61:1-6.
    • (2007) Am Stat , vol.61 , pp. 1-6
    • Molenberghs, G.1    Verbeke, G.2
  • 36
    • 84920420698 scopus 로고
    • Statistics and causal inference
    • Holland PW. Statistics and causal inference. J Am Stat Assoc. 1986;81:945-960.
    • (1986) J Am Stat Assoc , vol.81 , pp. 945-960
    • Holland, P.W.1
  • 40
    • 0039982650 scopus 로고    scopus 로고
    • Analysis of longitudinal data with nonignorable non-monotone missing values
    • Troxel AB, Harrington DP, Lipsitz SR. Analysis of longitudinal data with nonignorable non-monotone missing values. Appl Stat. 1998;47:425-438.
    • (1998) Appl Stat , vol.47 , pp. 425-438
    • Troxel, A.B.1    Harrington, D.P.2    Lipsitz, S.R.3
  • 41
    • 77951622706 scopus 로고
    • The central role of the propensity score method in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score method in observational studies for causal effects. Biometrika. 1983;70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 42
    • 84950953410 scopus 로고
    • Inference from nonrandomly missing categorical data: An example from a genetic study on Turner's syndrome
    • Nordheim EV. Inference from nonrandomly missing categorical data: an example from a genetic study on Turner's syndrome. J Am Stat Assoc. 1984;79:772-780.
    • (1984) J Am Stat Assoc , vol.79 , pp. 772-780
    • Nordheim, E.V.1
  • 43
    • 0002373855 scopus 로고
    • Discussion to Diggle, P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis
    • Little RJA. Discussion to Diggle, P.J. and Kenward, M.G.: informative dropout in longitudinal data analysis. Appl Stat. 1994;43:78.
    • (1994) Appl Stat , vol.43 , pp. 78
    • Little, R.J.A.1
  • 44
    • 0002373853 scopus 로고
    • Discussion to Diggle, P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis
    • Rubin DB. Discussion to Diggle, P.J. and Kenward, M.G.: informative dropout in longitudinal data analysis. Appl Stat. 1994;43:80-82.
    • (1994) Appl Stat , vol.43 , pp. 80-82
    • Rubin, D.B.1
  • 45
    • 0002373852 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Discussion to Diggle, P.J. and Kenward, M.G.
    • Laird NM. Discussion to Diggle, P.J. and Kenward, M.G.: informative dropout in longitudinal data analysis. Appl Stat. 1994;43:84.
    • (1994) Appl Stat , vol.43 , pp. 84
    • Laird, N.M.1
  • 46
    • 0000369209 scopus 로고
    • Regression models for longitudinal binary responses with informative dropouts
    • Fitzmaurice GM, Molenberghs G, Lipsitz SR. Regression models for longitudinal binary responses with informative dropouts. J R Stat Soc B. 1995;57:691-704.
    • (1995) J R Stat Soc B , vol.57 , pp. 691-704
    • Fitzmaurice, G.M.1    Molenberghs, G.2    Lipsitz, S.R.3
  • 47
  • 48
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with non-random dropout: An illustration of sensitivity
    • Kenward MG. Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. Stat Med. 1998;17:2723-2732.
    • (1998) Stat Med , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 49
    • 0032925431 scopus 로고    scopus 로고
    • Parametric models for incomplete continuous and categorical longitudinal studies data
    • Kenward MG, Molenberghs G. Parametric models for incomplete continuous and categorical longitudinal studies data. Stat Meth Med Res. 1999;8:51-83.
    • (1999) Stat Meth Med Res , vol.8 , pp. 51-83
    • Kenward, M.G.1    Molenberghs, G.2
  • 51
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén B, Kaplan D, Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika. 1987;52:431-462.
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 52
    • 84936025682 scopus 로고
    • Estimation of linear models with incomplete data
    • Allison PD. Estimation of linear models with incomplete data. Sociol Methodol. 1987;17:71-103.
    • (1987) Sociol Methodol , vol.17 , pp. 71-103
    • Allison, P.D.1
  • 53
    • 0026497615 scopus 로고
    • Modeling incomplete longitudinal and cross-sectional data using latent growth structural models
    • McArdle JJ, Hamagani F. Modeling incomplete longitudinal and cross-sectional data using latent growth structural models. Exp Aging Res. 1992;18:145-166.
    • (1992) Exp Aging Res , vol.18 , pp. 145-166
    • McArdle, J.J.1    Hamagani, F.2
  • 54
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little RJA, Wang Y. Pattern-mixture models for multivariate incomplete data with covariates. Biometrics. 1996;52:98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.2
  • 55
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis for longitudinal studies with drop-outs
    • Little RJA, Yau L. Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics. 1996;52:1324-1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.J.A.1    Yau, L.2
  • 56
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker D, Gibbons RD. Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Meth. 1997;2:64-78.
    • (1997) Psychological Meth , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 57
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Stat Med. 1997;16:239-258.
    • (1997) Stat Med , vol.16 , pp. 239-258
    • Hogan, J.W.1    Laird, N.M.2
  • 58
    • 0041175330 scopus 로고    scopus 로고
    • The muscatine children's obesity data reanalysed using pattern mixture models
    • Ekholm A, Skinner C. The muscatine children's obesity data reanalysed using pattern mixture models. Appl Stat. 1998;47:251-263.
    • (1998) Appl Stat , vol.47 , pp. 251-263
    • Ekholm, A.1    Skinner, C.2
  • 59
    • 0032353609 scopus 로고    scopus 로고
    • Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems
    • Molenberghs G, Michiels B, Kenward MG. Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems. Biometrical J. 1998;40:557-572.
    • (1998) Biometrical J , vol.40 , pp. 557-572
    • Molenberghs, G.1    Michiels, B.2    Kenward, M.G.3
  • 60
    • 0032885858 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models for incomplete categorical data with covariates
    • Michiels B, Molenberghs G, Lipsitz SR. Selection models and pattern-mixture models for incomplete categorical data with covariates. Biometrics. 1999;55:978-983.
    • (1999) Biometrics , vol.55 , pp. 978-983
    • Michiels, B.1    Molenberghs, G.2    Lipsitz, S.R.3
  • 61
    • 0034994805 scopus 로고    scopus 로고
    • The practical use of different strategies to handle dropout in longitudinal studies
    • Verbeke G, Lesaffre E, Spiessens B. The practical use of different strategies to handle dropout in longitudinal studies. Drug Inf J. 2001;35:419-434.
    • (2001) Drug Inf J , vol.35 , pp. 419-434
    • Verbeke, G.1    Lesaffre, E.2    Spiessens, B.3
  • 62
    • 0037197628 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout
    • Michiels B, Molenberghs G, Bijnens L, Vangeneugden T. Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout. Stat Med. 2002;21:1023-1041.
    • (2002) Stat Med , vol.21 , pp. 1023-1041
    • Michiels, B.1    Molenberghs, G.2    Bijnens, L.3    Vangeneugden, T.4
  • 63
    • 40249113335 scopus 로고    scopus 로고
    • Shared parameter models under random-effects misspecification
    • Rizopoulos D, Verbeke G, Molenberghs G. Shared parameter models under random-effects misspecification. Biometrika. 2008;95:63-74.
    • (2008) Biometrika , vol.95 , pp. 63-74
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 64
    • 84996261542 scopus 로고    scopus 로고
    • A semi-parametric shared parameter model to handle non-monotone nonignorable missingness
    • (online). March 28
    • Tsonaka R, Verbeke G, Lesaffre E. A semi-parametric shared parameter model to handle non-monotone nonignorable missingness. Biometrics (online). March 28, 2008.
    • (2008) Biometrics
    • Tsonaka, R.1    Verbeke, G.2    Lesaffre, E.3
  • 65
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • Beunckens C, Molenberghs G, Verbeke G, Mallinckrodt C. A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics. 2008;64:96-105.
    • (2008) Biometrics , vol.64 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 66
    • 21844487694 scopus 로고
    • Semiparametric efficiency in multivariate regression models with missing data
    • Robins JM, Rotnitzky A. Semiparametric efficiency in multivariate regression models with missing data. J Am Stat Assoc. 1995;90:122-129.
    • (1995) J Am Stat Assoc , vol.90 , pp. 122-129
    • Robins, J.M.1    Rotnitzky, A.2
  • 67
    • 0002121637 scopus 로고    scopus 로고
    • Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models
    • Halloran ME, Berry DA, eds., New York: Springer
    • Robins JM, Rotnitzky A, Scharfstein DO. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In: Halloran ME, Berry DA, eds., Statistical Models in Epidemiology, the Environment, and Clinical Trials. New York: Springer; 2000: 1-94.
    • (2000) Statistical Models in Epidemiology, the Environment, and Clinical Trials , pp. 1-94
    • Robins, J.M.1    Rotnitzky, A.2    Scharfstein, D.O.3
  • 68
    • 0035102566 scopus 로고    scopus 로고
    • Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring
    • Rotnitzky A, Scharfstein D, Su TL, Robins JM. Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics. 2001;57:103-113.
    • (2001) Biometrics , vol.57 , pp. 103-113
    • Rotnitzky, A.1    Scharfstein, D.2    Su, T.L.3    Robins, J.M.4
  • 69
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91:444-455.
    • (1996) J Am Stat Assoc , vol.91 , pp. 444-455
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 70
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics. 2002;58:21-29.
    • (2002) Biometrics , vol.58 , pp. 21-29
    • Frangakis, C.E.1    Rubin, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.