-
1
-
-
0017185443
-
Simple mathematical models with very complicated dynamics
-
May R.M. Simple mathematical models with very complicated dynamics. Nature 261 (1976) 459
-
(1976)
Nature
, vol.261
, pp. 459
-
-
May, R.M.1
-
3
-
-
68549135308
-
New proofs of the existence of the feigenbaum functions, Inst. Hautes tudes Sco
-
Report No. IHES/P/85/55
-
H. Epstein, New proofs of the existence of the feigenbaum functions, Inst. Hautes tudes Sco., Report No. IHES/P/85/55, 1985
-
(1985)
-
-
Epstein, H.1
-
4
-
-
0347447535
-
The universal metric properties of nonlinear transformations
-
Feigenbaum M.J. The universal metric properties of nonlinear transformations. J. Stat. Phys. 21 (1979) 669-706
-
(1979)
J. Stat. Phys.
, vol.21
, pp. 669-706
-
-
Feigenbaum, M.J.1
-
5
-
-
84966250718
-
A computer-assisted proof of the Feigenbaum conjectures
-
Lanford III O.E. A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc.. 6 (1982) 427-434
-
(1982)
Bull. Amer. Math. Soc..
, vol.6
, pp. 427-434
-
-
Lanford III, O.E.1
-
6
-
-
0036662554
-
Almost every real quadratic map is either regular or stochastic
-
Lyubich M. Almost every real quadratic map is either regular or stochastic. Ann. of Math. 156 (2002) 1-78
-
(2002)
Ann. of Math.
, vol.156
, pp. 1-78
-
-
Lyubich, M.1
-
8
-
-
0001870459
-
The dynamics of the Hnon map
-
Benedicks M., and Carleson L. The dynamics of the Hnon map. Ann. of Math. 133 2 (1991) 73-169
-
(1991)
Ann. of Math.
, vol.133
, Issue.2
, pp. 73-169
-
-
Benedicks, M.1
Carleson, L.2
-
9
-
-
0002053804
-
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps
-
Jakobson M.V. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys. 81 (1981) 39-88
-
(1981)
Comm. Math. Phys.
, vol.81
, pp. 39-88
-
-
Jakobson, M.V.1
-
10
-
-
33745388070
-
Computable starting conditions for the existence of nonuniform hyperbolicity in one-dimensional maps
-
Luzzatto S., and Takahashi H. Computable starting conditions for the existence of nonuniform hyperbolicity in one-dimensional maps. Nonlinearity 19 (2006) 1657-1695
-
(2006)
Nonlinearity
, vol.19
, pp. 1657-1695
-
-
Luzzatto, S.1
Takahashi, H.2
-
11
-
-
68549092796
-
Hyperbolicity is dense in the real quadratic family. Stony Brook IMS
-
Preprint
-
G. Swiatek, Hyperbolicity is dense in the real quadratic family. Stony Brook IMS Preprint 1992/10
-
(2010)
-
-
Swiatek, G.1
-
12
-
-
68549106243
-
-
Private communication
-
C. Simó, Private communication, 2008
-
(2008)
-
-
Simó, C.1
-
13
-
-
70349459683
-
-
D. Wilczak, P. Zgliczyński, Period doubling in the Rössler system - a computer assisted proof. Found. Comp. Math., 2009. doi:10.1007/s10208-009-9040-x(in press)
-
D. Wilczak, P. Zgliczyński, Period doubling in the Rössler system - a computer assisted proof. Found. Comp. Math., 2009. doi:10.1007/s10208-009-9040-x(in press)
-
-
-
-
15
-
-
0022581838
-
A class of interval-Newton-operators
-
Krawczyk R. A class of interval-Newton-operators. Computing 37 2 (1986) 179-183
-
(1986)
Computing
, vol.37
, Issue.2
, pp. 179-183
-
-
Krawczyk, R.1
-
17
-
-
0037561155
-
Proving the existence of long periodic orbits in 1D maps using Newton method and backward shooting
-
Galias Z. Proving the existence of long periodic orbits in 1D maps using Newton method and backward shooting. Topol. Appl. 124 1 (2002) 25-37
-
(2002)
Topol. Appl.
, vol.124
, Issue.1
, pp. 25-37
-
-
Galias, Z.1
-
19
-
-
33745351916
-
Windows of attraction of the logistic map
-
Mira C., et al. (Ed). ECIT 89, Batschuns (Austria), World Scientific, Singapore
-
Simó C., and Tatjer J.C. Windows of attraction of the logistic map. In: Mira C., et al. (Ed). European Conference on Iteration Theory. ECIT 89, Batschuns (Austria) (1991), World Scientific, Singapore 335-342
-
(1991)
European Conference on Iteration Theory
, pp. 335-342
-
-
Simó, C.1
Tatjer, J.C.2
-
20
-
-
68549107944
-
-
See D. Wilczak, http://www.ii.uj.edu.pl/~wilczak for a reference for auxiliary materials
-
See D. Wilczak, http://www.ii.uj.edu.pl/~wilczak for a reference for auxiliary materials
-
-
-
|