-
2
-
-
0000172830
-
-
10.1103/PhysRevA.35.442
-
A. K. Dhara and S. K. Ghosh, Phys. Rev. A 35, 442 (1987). 10.1103/PhysRevA.35.442
-
(1987)
Phys. Rev. A
, vol.35
, pp. 442
-
-
Dhara, A.K.1
Ghosh, S.K.2
-
6
-
-
0035838240
-
-
10.1142/S021797920100499X
-
R. Van Leeuwen, Int. J. Mod. Phys. B 15, 1969 (2001). 10.1142/S021797920100499X
-
(2001)
Int. J. Mod. Phys. B
, vol.15
, pp. 1969
-
-
Van Leeuwen, R.1
-
7
-
-
33645944934
-
-
10.1103/PhysRevLett.55.2850
-
E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985). 10.1103/PhysRevLett.55.2850
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 2850
-
-
Gross, E.K.U.1
Kohn, W.2
-
10
-
-
4243502702
-
-
10.1088/0022-3719/12/24/013
-
A. K. Theophilou, J. Phys. C 12, 5419 (1979). 10.1088/0022-3719/12/24/013
-
(1979)
J. Phys. C
, vol.12
, pp. 5419
-
-
Theophilou, A.K.1
-
15
-
-
68549109955
-
-
edited by P. K. Chattaraj (Taylor & Francis, Boca Raton
-
A. Nagy, M. Levy, and P. W. Ayers, in Chemical Reactivity Theory: A Density Functional View, edited by, P. K. Chattaraj, (Taylor & Francis, Boca Raton, 2009), p. 121.
-
(2009)
Chemical Reactivity Theory: A Density Functional View
, pp. 121
-
-
Nagy, A.1
Levy, M.2
Ayers, P.W.3
-
16
-
-
0038235632
-
-
10.1103/PhysRevA.59.3359
-
A. Görling, Phys. Rev. A 59, 3359 (1999). 10.1103/PhysRevA.59.3359
-
(1999)
Phys. Rev. A
, vol.59
, pp. 3359
-
-
Görling, A.1
-
17
-
-
0000947119
-
-
10.1103/PhysRevLett.83.4361
-
M. Levy and A. Nagy, Phys. Rev. Lett. 83, 4361 (1999). 10.1103/PhysRevLett.83.4361
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4361
-
-
Levy, M.1
Nagy, A.2
-
18
-
-
0035331824
-
-
10.1103/PhysRevA.63.052502
-
A. Nagy and M. Levy, Phys. Rev. A 63, 052502 (2001). 10.1103/PhysRevA.63. 052502
-
(2001)
Phys. Rev. A
, vol.63
, pp. 052502
-
-
Nagy, A.1
Levy, M.2
-
19
-
-
84990669494
-
-
10.1002/qua.560240302
-
E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983). 10.1002/qua.560240302
-
(1983)
Int. J. Quantum Chem.
, vol.24
, pp. 243
-
-
Lieb, E.H.1
-
20
-
-
33748566272
-
-
10.1016/j.theochem.2006.05.012
-
W. Kutzelnigg, J. Mol. Struct.: THEOCHEM 768, 163 (2006). 10.1016/j.theochem.2006.05.012
-
(2006)
J. Mol. Struct.: THEOCHEM
, vol.768
, pp. 163
-
-
Kutzelnigg, W.1
-
24
-
-
0000323549
-
-
10.2307/2369620
-
H. Poincaré, Am. J. Math. 12, 211 (1890). 10.2307/2369620
-
(1890)
Am. J. Math.
, vol.12
, pp. 211
-
-
Poincaré, H.1
-
25
-
-
0001348112
-
-
E. Hylleraas, B. Undheim, 10.1007/BF01397263
-
E. Hylleraas, B. Undheim, Z. Phys. 65, 759 (1930). 10.1007/BF01397263
-
(1930)
Z. Phys.
, vol.65
, pp. 759
-
-
-
26
-
-
0039392475
-
-
10.1103/PhysRev.43.830
-
J. K. L. MacDonald, Phys. Rev. 43, 830 (1933). 10.1103/PhysRev.43.830
-
(1933)
Phys. Rev.
, vol.43
, pp. 830
-
-
MacDonald, J.K.L.1
-
27
-
-
0003833812
-
-
NATO Advanced Studies Institute, Series B: Physics (Plenum, New York
-
E. H. Lieb, Density Functional Methods in Physics, NATO Advanced Studies Institute, Series B: Physics (Plenum, New York, 1985), Vol. 123, p. 31.
-
(1985)
Density Functional Methods in Physics
, vol.123
, pp. 31
-
-
Lieb, E.H.1
-
29
-
-
33645496575
-
-
10.1103/PhysRevB.31.6264
-
J. P. Perdew and M. Levy, Phys. Rev. B 31, 6264 (1985). 10.1103/PhysRevB.31.6264
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6264
-
-
Perdew, J.P.1
Levy, M.2
-
31
-
-
39249084772
-
-
10.1103/PhysRevLett.87.113002
-
V. Sahni, L. Massa, R. Singh, and M. Slamet, Phys. Rev. Lett. 87, 113002 (2001). 10.1103/PhysRevLett.87.113002
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 113002
-
-
Sahni, V.1
Massa, L.2
Singh, R.3
Slamet, M.4
-
32
-
-
0038397484
-
-
10.1103/PhysRevLett.90.123001
-
V. Sahni and X. Y. Pan, Phys. Rev. Lett. 90, 123001 (2003). 10.1103/PhysRevLett.90.123001
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 123001
-
-
Sahni, V.1
Pan, X.Y.2
-
33
-
-
2942595999
-
-
10.1103/PhysRevA.69.042512
-
M. K. Harbola, Phys. Rev. A 69, 042512 (2004). 10.1103/PhysRevA.69.042512
-
(2004)
Phys. Rev. A
, vol.69
, pp. 042512
-
-
Harbola, M.K.1
-
35
-
-
0038555899
-
-
10.1103/PhysRevLett.85.4229
-
A. Görling, Phys. Rev. Lett. 85, 4229 (2000). 10.1103/PhysRevLett. 85.4229
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4229
-
-
Görling, A.1
-
36
-
-
68549094005
-
-
Though Perdew and Levy did not list Eq. 21 in their 1985 paper, it is clearly implied by their discussion.
-
Though Perdew and Levy did not list Eq. 21 in their 1985 paper, it is clearly implied by their discussion.
-
-
-
-
37
-
-
48749145043
-
-
10.1016/0378-4371(83)90254-6
-
H. Englisch and R. Englisch, Physica A 121, 253 (1983). 10.1016/0378-4371(83)90254-6
-
(1983)
Physica A
, vol.121
, pp. 253
-
-
Englisch, H.1
Englisch, R.2
-
38
-
-
10044230569
-
-
10.1103/PhysRevA.26.1200
-
M. Levy, Phys. Rev. A 26, 1200 (1982). 10.1103/PhysRevA.26.1200
-
(1982)
Phys. Rev. A
, vol.26
, pp. 1200
-
-
Levy, M.1
-
40
-
-
33144482150
-
-
10.1103/PhysRevA.73.012513
-
P. W. Ayers, Phys. Rev. A 73, 012513 (2006). 10.1103/PhysRevA.73.012513
-
(2006)
Phys. Rev. A
, vol.73
, pp. 012513
-
-
Ayers, P.W.1
-
44
-
-
34247606749
-
-
10.1007/s00214-006-0218-x
-
F. Della Sala, Theor. Chem. Acc. 117, 981 (2007). 10.1007/s00214-006- 0218-x
-
(2007)
Theor. Chem. Acc.
, vol.117
, pp. 981
-
-
Della Sala, F.1
-
46
-
-
0037146765
-
-
10.1016/S0009-2614(02)01612-3
-
F. Tasnadi and A. Nagy, Chem. Phys. Lett. 366, 496 (2002). 10.1016/S0009-2614(02)01612-3
-
(2002)
Chem. Phys. Lett.
, vol.366
, pp. 496
-
-
Tasnadi, F.1
Nagy, A.2
-
48
-
-
4344573458
-
-
10.1002/qua.10864
-
A. Nagy, Int. J. Quantum Chem. 99, 256 (2004). 10.1002/qua.10864
-
(2004)
Int. J. Quantum Chem.
, vol.99
, pp. 256
-
-
Nagy, A.1
-
49
-
-
33750576113
-
-
10.1016/S0065-3276(03)42061-3
-
A. Nagy, Adv. Quantum Chem. 42, 363 (2003). 10.1016/S0065-3276(03)42061-3
-
(2003)
Adv. Quantum Chem.
, vol.42
, pp. 363
-
-
Nagy, A.1
-
51
-
-
33750590033
-
-
10.1088/0953-4075/39/20/005
-
P. Samal and M. K. Harbola, J. Phys. B 39, 4065 (2006). 10.1088/0953-4075/39/20/005
-
(2006)
J. Phys. B
, vol.39
, pp. 4065
-
-
Samal, P.1
Harbola, M.K.2
-
52
-
-
63649159043
-
-
10.1088/0953-4075/42/1/015003
-
M. K. Harbola and P. Samal, J. Phys. B 42, 015003 (2009). 10.1088/0953-4075/42/1/015003
-
(2009)
J. Phys. B
, vol.42
, pp. 015003
-
-
Harbola, M.K.1
Samal, P.2
-
53
-
-
26444456080
-
-
10.1088/0953-4075/38/20/011
-
P. Samal and M. K. Harbola, J. Phys. B 38, 3765 (2005). 10.1088/0953-4075/38/20/011
-
(2005)
J. Phys. B
, vol.38
, pp. 3765
-
-
Samal, P.1
Harbola, M.K.2
-
54
-
-
0346541894
-
-
10.1002/(SICI)1097-461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
-
A. Nagy, Int. J. Quantum Chem. 70, 681 (1998). 10.1002/(SICI)1097- 461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
-
(1998)
Int. J. Quantum Chem.
, vol.70
, pp. 681
-
-
Nagy, A.1
-
55
-
-
0002427095
-
-
10.1021/ar00044a002
-
J. K. Percus, Acc. Chem. Res. 27, 224 (1994). 10.1021/ar00044a002
-
(1994)
Acc. Chem. Res.
, vol.27
, pp. 224
-
-
Percus, J.K.1
-
60
-
-
33845797047
-
-
10.1103/PhysRevA.74.062511
-
S. Pittalis, S. Kurth, N. Helbig, and E. K. U. Gross, Phys. Rev. A 74, 062511 (2006). 10.1103/PhysRevA.74.062511
-
(2006)
Phys. Rev. A
, vol.74
, pp. 062511
-
-
Pittalis, S.1
Kurth, S.2
Helbig, N.3
Gross, E.K.U.4
-
61
-
-
10644250257
-
-
10.1103/PhysRev.136.B864
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
62
-
-
19744381882
-
-
10.1103/PhysRevLett.93.173001
-
R. Gaudoin and K. Burke, Phys. Rev. Lett. 93, 173001 (2004). 10.1103/PhysRevLett.93.173001
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 173001
-
-
Gaudoin, R.1
Burke, K.2
-
63
-
-
18144365894
-
-
10.1103/PhysRevLett.94.029901
-
R. Gaudoin and K. Burke, Phys. Rev. Lett. 94, 029901 (2005). 10.1103/PhysRevLett.94.029901
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 029901
-
-
Gaudoin, R.1
Burke, K.2
-
65
-
-
68549114926
-
-
One needs an analytic counterexample to draw a firm conclusion, but because there is a one-to-one mapping between excited-state densities and external potentials (up to a constant shift) in one-electron systems, it seems very difficult to find such a counterexample.
-
One needs an analytic counterexample to draw a firm conclusion, but because there is a one-to-one mapping between excited-state densities and external potentials (up to a constant shift) in one-electron systems, it seems very difficult to find such a counterexample.
-
-
-
-
73
-
-
68549132030
-
-
This assumption is rigorously correct if the ensemble- v -representable kth -excited-state densities are a dense subset of the space of N -representable densities, as is true for ground states. There is no reason to doubt that the ground-state result extends to excited states.
-
This assumption is rigorously correct if the ensemble- v -representable kth -excited-state densities are a dense subset of the space of N -representable densities, as is true for ground states. There is no reason to doubt that the ground-state result extends to excited states.
-
-
-
-
74
-
-
34547564932
-
-
10.1103/PhysRev.56.340
-
R. P. Feynman, Phys. Rev. 56, 340 (1939). 10.1103/PhysRev.56.340
-
(1939)
Phys. Rev.
, vol.56
, pp. 340
-
-
Feynman, R.P.1
-
77
-
-
0001102132
-
-
10.1103/PhysRevA.47.2783
-
A. Görling, Phys. Rev. A 47, 2783 (1993). 10.1103/PhysRevA.47.2783
-
(1993)
Phys. Rev. A
, vol.47
, pp. 2783
-
-
Görling, A.1
-
78
-
-
84980086883
-
-
10.1002/cpa.3160100201
-
T. Kato, Commun. Pure Appl. Math. 10, 151 (1957). 10.1002/cpa.3160100201
-
(1957)
Commun. Pure Appl. Math.
, vol.10
, pp. 151
-
-
Kato, T.1
-
79
-
-
36849121347
-
-
10.1063/1.1701443
-
E. Steiner, J. Chem. Phys. 39, 2365 (1963). 10.1063/1.1701443
-
(1963)
J. Chem. Phys.
, vol.39
, pp. 2365
-
-
Steiner, E.1
-
81
-
-
0000992874
-
-
10.1016/S0009-2614(00)01250-1
-
A. Nagy and K. D. Sen, Chem. Phys. Lett. 332, 154 (2000). 10.1016/S0009-2614(00)01250-1
-
(2000)
Chem. Phys. Lett.
, vol.332
, pp. 154
-
-
Nagy, A.1
Sen, K.D.2
-
82
-
-
0033741831
-
-
10.1088/0953-4075/33/9/306
-
A. Nagy and K. D. Sen, J. Phys. B 33, 1745 (2000). 10.1088/0953-4075/33/ 9/306
-
(2000)
J. Phys. B
, vol.33
, pp. 1745
-
-
Nagy, A.1
Sen, K.D.2
-
86
-
-
26544437899
-
-
10.1103/PhysRevA.23.2106
-
R. Ahlrichs, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and J. D. Morgan III, Phys. Rev. A 23, 2106 (1981). 10.1103/PhysRevA.23.2106
-
(1981)
Phys. Rev. A
, vol.23
, pp. 2106
-
-
Ahlrichs, R.1
Hoffmann-Ostenhof, M.2
Hoffmann-Ostenhof, T.3
Morgan Iii, J.D.4
-
89
-
-
0000563433
-
-
10.1088/0953-4075/22/13/009
-
S. H. Patil, J. Phys. B 22, 2051 (1989). 10.1088/0953-4075/22/13/009
-
(1989)
J. Phys. B
, vol.22
, pp. 2051
-
-
Patil, S.H.1
-
92
-
-
68549092195
-
-
Many external potentials that cannot be expressed in this form can still be approximated, to arbitrary precision, by an external potential with this form.
-
Many external potentials that cannot be expressed in this form can still be approximated, to arbitrary precision, by an external potential with this form.
-
-
-
-
93
-
-
34247214618
-
-
10.1063/1.2718950
-
P. W. Ayers and A. Nagy, J. Chem. Phys. 126, 144108 (2007). 10.1063/1.2718950
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 144108
-
-
Ayers, P.W.1
Nagy, A.2
-
94
-
-
68549103793
-
-
There is also a constructive proof. Select K spheres in the space of interest. By choosing appropriate point charges in the spheres, we can approximate the external potential outside the spheres to any desired accuracy, which is just the idea behind multipole expansions. Next, increase the number of spheres but decrease the size of the spheres, and repeat the approximation process. Continuing in this fashion, the spheres shrink to zero size and one eventually finds that the volume of space in which the external potential is inaccurately rendered (due to the presence of the approximating point charges) is a set of measure zero. This method of proof relies on the fact that any countable subset of the real numbers has measure zero.
-
There is also a constructive proof. Select K spheres in the space of interest. By choosing appropriate point charges in the spheres, we can approximate the external potential outside the spheres to any desired accuracy, which is just the idea behind multipole expansions. Next, increase the number of spheres but decrease the size of the spheres, and repeat the approximation process. Continuing in this fashion, the spheres shrink to zero size and one eventually finds that the volume of space in which the external potential is inaccurately rendered (due to the presence of the approximating point charges) is a set of measure zero. This method of proof relies on the fact that any countable subset of the real numbers has measure zero.
-
-
-
-
95
-
-
68549132882
-
-
It will suffice to restrict consideration to potentials that are discontinuous at a countable number of points, as such functions can be written as the limit of a sequence of continuous functions.
-
It will suffice to restrict consideration to potentials that are discontinuous at a countable number of points, as such functions can be written as the limit of a sequence of continuous functions.
-
-
-
-
96
-
-
2942683313
-
-
10.1063/1.1729856
-
F. De Proft, P. W. Ayers, K. D. Sen, and P. Geerlings, J. Chem. Phys. 120, 9969 (2004). 10.1063/1.1729856
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 9969
-
-
De Proft, F.1
Ayers, P.W.2
Sen, K.D.3
Geerlings, P.4
-
101
-
-
33749343759
-
-
10.1103/PhysRevA.74.042502
-
P. W. Ayers, Phys. Rev. A 74, 042502 (2006). 10.1103/PhysRevA.74.042502
-
(2006)
Phys. Rev. A
, vol.74
, pp. 042502
-
-
Ayers, P.W.1
|