-
2
-
-
34250915197
-
-
10.1007/BF01343193
-
M. Born and V. Fock, Z. Phys. 51, 165 (1928). 10.1007/BF01343193
-
(1928)
Z. Phys.
, vol.51
, pp. 165
-
-
Born, M.1
Fock, V.2
-
5
-
-
49749125608
-
-
10.1103/PhysRevLett.101.060403
-
J. Du, L. Hu, Y. Wang, J. Wu, M. Zhao, and D. Suter, Phys. Rev. Lett. 101, 060403 (2008). 10.1103/PhysRevLett.101.060403
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 060403
-
-
Du, J.1
Hu, L.2
Wang, Y.3
Wu, J.4
Zhao, M.5
Suter, D.6
-
6
-
-
0001594233
-
-
10.1103/PhysRev.51.648
-
J. Schwinger, Phys. Rev. 51, 648 (1937). 10.1103/PhysRev.51.648
-
(1937)
Phys. Rev.
, vol.51
, pp. 648
-
-
Schwinger, J.1
-
8
-
-
68549097648
-
-
m| N = m| H |n En - Em comes from the time derivative of m|n = δmn and of m| H |n = En δmn, where δmk is Kronecker's delta.
-
m| = m| H |n En - Em comes from the time derivative of m|n = δmn and of m| H |n = En δmn, where δmk is Kronecker's delta.
-
-
-
-
10
-
-
27144467428
-
-
10.1103/PhysRevA.72.012114
-
Z. Wu and H. Yang, Phys. Rev. A 72, 012114 (2005). 10.1103/PhysRevA.72. 012114
-
(2005)
Phys. Rev. A
, vol.72
, pp. 012114
-
-
Wu, Z.1
Yang, H.2
-
11
-
-
27144534836
-
-
10.1103/PhysRevLett.95.110407
-
D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 95, 110407 (2005). 10.1103/PhysRevLett.95.110407
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 110407
-
-
Tong, D.M.1
Singh, K.2
Kwek, L.C.3
Oh, C.H.4
-
13
-
-
33748802768
-
-
10.1103/PhysRevLett.97.128902
-
J. Ma, Y. Zhang, E. Wang, and B. Wu, Phys. Rev. Lett. 97, 128902 (2006). 10.1103/PhysRevLett.97.128902
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 128902
-
-
Ma, J.1
Zhang, Y.2
Wang, E.3
Wu, B.4
-
15
-
-
0003758310
-
-
McGraw-Hill Book Co., New York
-
L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co., New York, 1949).
-
(1949)
Quantum Mechanics
-
-
Schiff, L.I.1
-
18
-
-
5544312166
-
-
10.1103/PhysRevA.49.R2217
-
K. Nakamura and S. A. Rice, Phys. Rev. A 49, R2217 (1994). 10.1103/PhysRevA.49.R2217
-
(1994)
Phys. Rev. A
, vol.49
, pp. 2217
-
-
Nakamura, K.1
Rice, S.A.2
-
19
-
-
0007177228
-
-
edited by G. L. Oppo, S. M. Barnett, E. Riis, and M. Wilkenson (Springer, New York
-
S. Stenholm, Quantum Dynamics of Simple Systems, edited by, G. L. Oppo, S. M. Barnett, E. Riis, and, M. Wilkenson, (Springer, New York, 1996), p. 267.
-
(1996)
Quantum Dynamics of Simple Systems
, pp. 267
-
-
Stenholm, S.1
-
20
-
-
0033685783
-
-
10.1103/PhysRevA.61.062104
-
M. Wilkinson and M. A. Morgan, Phys. Rev. A 61, 062104 (2000). 10.1103/PhysRevA.61.062104
-
(2000)
Phys. Rev. A
, vol.61
, pp. 062104
-
-
Wilkinson, M.1
Morgan, M.A.2
-
23
-
-
33645093954
-
-
10.1016/j.physleta.2005.12.052
-
T. Vértesi and R. Englman, Phys. Lett. A 353, 11 (2006). 10.1016/j.physleta.2005.12.052
-
(2006)
Phys. Lett. A
, vol.353
, pp. 11
-
-
Vértesi, T.1
Englman, R.2
-
24
-
-
34147141332
-
-
10.1103/PhysRevLett.98.150402
-
D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 98, 150402 (2007). 10.1103/PhysRevLett.98.150402
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 150402
-
-
Tong, D.M.1
Singh, K.2
Kwek, L.C.3
Oh, C.H.4
-
25
-
-
34547472582
-
-
10.1016/j.physleta.2007.03.056
-
M.-Y. Ye, X.-F. Zhou, Y.-S. Zhang, and G.-C. Guo, Phys. Lett. A 368, 18 (2007). 10.1016/j.physleta.2007.03.056
-
(2007)
Phys. Lett. A
, vol.368
, pp. 18
-
-
Ye, M.-Y.1
Zhou, X.-F.2
Zhang, Y.-S.3
Guo, G.-C.4
-
26
-
-
17844365866
-
-
10.1016/j.physleta.2005.03.043
-
D. M. Tong, K. Singh, L. C. Kwek, X. J. Fan, and C. H. Oh, Phys. Lett. A 339, 288 (R) (2005). 10.1016/j.physleta.2005.03.043
-
(2005)
Phys. Lett. A
, vol.339
, pp. 288
-
-
Tong, D.M.1
Singh, K.2
Kwek, L.C.3
Fan, X.J.4
Oh, C.H.5
-
27
-
-
35148826834
-
-
10.1103/PhysRevA.76.044102
-
R. MacKenzie, A. Morin-Duchesne, H. Paquette, and J. Pinel, Phys. Rev. A 76, 044102 (2007). 10.1103/PhysRevA.76.044102
-
(2007)
Phys. Rev. A
, vol.76
, pp. 044102
-
-
MacKenzie, R.1
Morin-Duchesne, A.2
Paquette, H.3
Pinel, J.4
-
28
-
-
49749097372
-
-
10.1103/PhysRevA.76.024304
-
Z. Wei and M. Ying, Phys. Rev. A 76, 024304 (2007). 10.1103/PhysRevA.76. 024304
-
(2007)
Phys. Rev. A
, vol.76
, pp. 024304
-
-
Wei, Z.1
Ying, M.2
-
29
-
-
41449102472
-
-
10.1103/PhysRevA.77.032109
-
Y. Zhao, Phys. Rev. A 77, 032109 (2008). 10.1103/PhysRevA.77.032109
-
(2008)
Phys. Rev. A
, vol.77
, pp. 032109
-
-
Zhao, Y.1
-
30
-
-
46149093239
-
-
10.1103/PhysRevA.77.062114
-
J.-D. Wu, M.-S. Zhao, J.-L. Chen, and Y.-D. Zhang, Phys. Rev. A 77, 062114 (2008). 10.1103/PhysRevA.77.062114
-
(2008)
Phys. Rev. A
, vol.77
, pp. 062114
-
-
Wu, J.-D.1
Zhao, M.-S.2
Chen, J.-L.3
Zhang, Y.-D.4
-
34
-
-
0000321758
-
-
10.1143/JPSJ.5.435
-
T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950). 10.1143/JPSJ.5.435
-
(1950)
J. Phys. Soc. Jpn.
, vol.5
, pp. 435
-
-
Kato, T.1
-
37
-
-
18444397177
-
-
10.1103/PhysRevA.71.012331
-
M. S. Sarandy and D. A. Lidar, Phys. Rev. A 71, 012331 (2005). 10.1103/PhysRevA.71.012331
-
(2005)
Phys. Rev. A
, vol.71
, pp. 012331
-
-
Sarandy, M.S.1
Lidar, D.A.2
-
38
-
-
68549095815
-
-
The path parametrization is here s (t) =t/T=εt[0,1] and Hε (t) =H [s (t)], where T is the evolution time. The Schrödinger equation is then isi;ε (t) □ dt = Hε (t) | Ψε (t) □ or iε d | Ψ (s) □ ds =H (s) | Ψ (s) □. More generally, a local control of the speed is possible Hs (t) =H [s (t)] by using a monotonic function s (t)rpolating Hamiltonian H (s) = Hin (1-s) + Hfin s.si;ε (t) □ dt = Hε (t) | Ψε (t) □ or iε d | Ψ (s) □ ds =H (s) | Ψ (s) □. More generally, a local control of the speed is possible Hs (t) =H [s (t)] by using a monotonic function s (t) □[0,1]. An example is the interpolating Hamiltonian H (s) = Hin (1-s) + Hfin s.
-
The path parametrization is here s (t) =t/T=εt[0,1] and Hε (t) =H [s (t)], where T is the evolution time. The Schrödinger equation is then i
-
-
-
-
39
-
-
0035917832
-
-
10.1126/science.1057726
-
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 292, 472 (2001). 10.1126/science.1057726
-
(2001)
Science
, vol.292
, pp. 472
-
-
Farhi, E.1
Goldstone, J.2
Gutmann, S.3
Lapan, J.4
Lundgren, A.5
Preda, D.6
-
40
-
-
34748848044
-
-
10.1016/j.physleta.2007.05.021
-
J. Liu and L.-B. Fu, Phys. Lett. A 370, 17 (2007). 10.1016/j.physleta. 2007.05.021
-
(2007)
Phys. Lett. A
, vol.370
, pp. 17
-
-
Liu, J.1
Fu, L.-B.2
-
41
-
-
33745135167
-
-
Springer, New York
-
E. E. Nikitin, Handbooks of Atomic, Molecular, and Optical Physics (Springer, New York, 2006), Chap..
-
(2006)
Handbooks of Atomic, Molecular, and Optical Physics
-
-
Nikitin, E.E.1
-
42
-
-
68549134769
-
-
In this paper, we use x = x† x = ∑ i=i N | xi | 2 and x 1 = ∑ i=1 N | xi |. They verify x 2 ≤ x 1 ≤N x 2. For the matrix norm M = maxx≠0 Mx x .
-
In this paper, we use x = x† x = ∑ i=i N | xi | 2 and x 1 = ∑ i=1 N | xi |. They verify x 2 ≤ x 1 ≤N x 2. For the matrix norm M = maxx≠0 Mx x.
-
-
-
-
44
-
-
68549139729
-
-
For real Hamiltonian H, |m is real, so the (Pancharatnam's phase) arg m| is zero and d dt m|m =2 m| m =0.
-
For real Hamiltonian H, |m is real, so the (Pancharatnam's phase) arg m| is zero and d dt m|m =2 m| m =0.
-
-
-
-
45
-
-
68549118529
-
-
Interestingly enough, very similar considerations have been used by Born and Fock in their seminal paper.
-
Interestingly enough, very similar considerations have been used by Born and Fock in their seminal paper.
-
-
-
-
46
-
-
33745135167
-
-
Springer, New York
-
J. Paldus, Handbooks of Atomic, Molecular, and Optical Physics (Springer, New York, 2006), Chap..
-
(2006)
Handbooks of Atomic, Molecular, and Optical Physics
-
-
Paldus, J.1
-
47
-
-
68549084954
-
-
Simple condition (similar to Weyl's theorem) for the smallness of δ′-1 off-diagonal terms exists. For instance, by choosing H0 as the diagonal part of H′ in the Brillouin-Wigner equation, we can replace conditions 13 essentially by H (t) 1 ΔE (t) ≈ Δ En(t)practical interest because it contains not only Δ En, the gaprelative to |n□, as in Eq. 1, but also the global energy spectral gap ΔE= minm≠ker, this may be of small practical interest because it contains not only Δ En, the gap relative to |n□, as in Eq. 1, but also the global energy spectral gap ΔE= minm≠k | Ek - Em
-
Simple condition (similar to Weyl's theorem) for the smallness of δ′-1 off-diagonal terms exists. For instance, by choosing H0 as the diagonal part of H′ in the Brillouin-Wigner equation, we can replace conditions 13 essentially by H (t) 1 ΔE (t) ≈ Δ En (t)
-
-
-
-
48
-
-
24844472646
-
-
10.1103/PhysRevA.50.843
-
Y. Kayanuma, Phys. Rev. A 50, 843 (1994). 10.1103/PhysRevA.50.843
-
(1994)
Phys. Rev. A
, vol.50
, pp. 843
-
-
Kayanuma, Y.1
-
49
-
-
68549115004
-
-
Interestingly enough, the reverse case, namely, the diabatic limit (p1 α/1 to the reverse phenomenon of adiabaticity created after multiple passages (pM ≈0) known as suppression of the tunneling, coherent destruction of tunneling, dynamical localization, or population trapping depending on the context.to the reverse phenomenon of adiabaticity created after multiple passages (pM ≈0) known as suppression of the tunneling, coherent destruction of tunneling, dynamical localization, or population trapping depending on the context.
-
Interestingly enough, the reverse case, namely, the diabatic limit (p1 ≈1) can lead (for instance when α1)
-
-
-
-
51
-
-
66649104441
-
-
10.1103/PhysRevLett.102.220401
-
M. H. S. Amin, Phys. Rev. Lett. 102, 220401 (2009). 10.1103/PhysRevLett. 102.220401
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 220401
-
-
Amin, M.H.S.1
-
52
-
-
68549116847
-
-
More practical definition of a nonoscillating Hamiltonian than based on the small number of monotonicity change of the adiabatic Hamiltonian H′ would be useful. We conjecture (and hope that someone could demonstrate it) that real Hamiltonians containing sum, product, multiplication, or division of composition of (real) exponential or polynomial functions are of this type. A possible clue for this proof may be based on iterative use of Eq. 6 with the iterative U″, P″, U (3), P (3),... matrices converging toward the wanted diagonalization, as done in the Jacobi algorithm which iterates the N=2 case. During each Jacobi step, the P (m) elements are still of the sum, product, multiplication, or division of composition of (real) exponential or polynomial types. The exponent of the polynomial functions grows, as well as the number of monoticity changes, but slowly enough to be always bounded (they never reach infinity due to the isolated zero theorem).
-
More practical definition of a nonoscillating Hamiltonian than based on the small number of monotonicity change of the adiabatic Hamiltonian H′ would be useful. We conjecture (and hope that someone could demonstrate it) that real Hamiltonians containing sum, product, multiplication, or division of composition of (real) exponential or polynomial functions are of this type. A possible clue for this proof may be based on iterative use of Eq. 6 with the iterative U″, P″, U (3), P (3),... matrices converging toward the wanted diagonalization, as done in the Jacobi algorithm which iterates the N=2 case. During each Jacobi step, the P (m) elements are still of the sum, product, multiplication, or division of composition of (real) exponential or polynomial types. The exponent of the polynomial functions grows, as well as the number of monoticity changes, but slowly enough to be always bounded (they never reach infinity due to the isolated zero theorem).
-
-
-
-
54
-
-
0011621022
-
-
10.1088/0305-4470/17/6/018
-
M. V. Berry, J. Phys. A 17, 1225 (1984). 10.1088/0305-4470/17/6/018
-
(1984)
J. Phys. A
, vol.17
, pp. 1225
-
-
Berry, M.V.1
-
56
-
-
33744771952
-
-
10.1088/1367-2630/8/5/083
-
Y. Rezek and R. Kosloff, New J. Phys. 8, 83 (2006). 10.1088/1367-2630/8/ 5/083
-
(2006)
New J. Phys.
, vol.8
, pp. 83
-
-
Rezek, Y.1
Kosloff, R.2
-
57
-
-
84867926408
-
-
10.1016/S0024-3795(01)00571-7
-
I. C. F. Ipsen, Linear Algebr. Appl. 358, 239 (2003). 10.1016/S0024-3795(01)00571-7
-
(2003)
Linear Algebr. Appl.
, vol.358
, pp. 239
-
-
Ipsen, I.C.F.1
-
58
-
-
33745659237
-
-
10.1016/j.cam.2005.08.019
-
X. Chen and W. Li, J. Comput. Appl. Math. 196, 338 (2006). 10.1016/j.cam.2005.08.019
-
(2006)
J. Comput. Appl. Math.
, vol.196
, pp. 338
-
-
Chen, X.1
Li, W.2
-
60
-
-
68549109195
-
-
We wrote En′ 1 simply as En′.
-
We wrote En′ 1 simply as En′.
-
-
-
-
61
-
-
0036542418
-
-
10.1103/PhysRevA.65.042308
-
J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002). 10.1103/PhysRevA.65.042308
-
(2002)
Phys. Rev. A
, vol.65
, pp. 042308
-
-
Roland, J.1
Cerf, N.J.2
-
62
-
-
0000349669
-
-
10.1016/S0370-1573(98)00022-2
-
M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998). 10.1016/S0370-1573(98)00022-2
-
(1998)
Phys. Rep.
, vol.304
, pp. 229
-
-
Grifoni, M.1
Hänggi, P.2
|