메뉴 건너뛰기




Volumn 80, Issue 1, 2009, Pages

General conditions for quantum adiabatic evolution

Author keywords

[No Author keywords available]

Indexed keywords

ADIABATIC EVOLUTION; ADIABATICITY; EIGEN STATE; PHYSICAL SYSTEMS; QUANTUM ADIABATIC THEOREM; SINUSOIDAL FUNCTIONS; SPECTRAL GAP;

EID: 68549092696     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.80.012106     Document Type: Article
Times cited : (102)

References (62)
  • 2
    • 34250915197 scopus 로고
    • 10.1007/BF01343193
    • M. Born and V. Fock, Z. Phys. 51, 165 (1928). 10.1007/BF01343193
    • (1928) Z. Phys. , vol.51 , pp. 165
    • Born, M.1    Fock, V.2
  • 6
    • 0001594233 scopus 로고
    • 10.1103/PhysRev.51.648
    • J. Schwinger, Phys. Rev. 51, 648 (1937). 10.1103/PhysRev.51.648
    • (1937) Phys. Rev. , vol.51 , pp. 648
    • Schwinger, J.1
  • 8
    • 68549097648 scopus 로고    scopus 로고
    • m| N = m| H |n En - Em comes from the time derivative of m|n = δmn and of m| H |n = En δmn, where δmk is Kronecker's delta.
    • m| = m| H |n En - Em comes from the time derivative of m|n = δmn and of m| H |n = En δmn, where δmk is Kronecker's delta.
  • 10
    • 27144467428 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.72.012114
    • Z. Wu and H. Yang, Phys. Rev. A 72, 012114 (2005). 10.1103/PhysRevA.72. 012114
    • (2005) Phys. Rev. A , vol.72 , pp. 012114
    • Wu, Z.1    Yang, H.2
  • 15
  • 18
    • 5544312166 scopus 로고
    • 10.1103/PhysRevA.49.R2217
    • K. Nakamura and S. A. Rice, Phys. Rev. A 49, R2217 (1994). 10.1103/PhysRevA.49.R2217
    • (1994) Phys. Rev. A , vol.49 , pp. 2217
    • Nakamura, K.1    Rice, S.A.2
  • 19
    • 0007177228 scopus 로고    scopus 로고
    • edited by G. L. Oppo, S. M. Barnett, E. Riis, and M. Wilkenson (Springer, New York
    • S. Stenholm, Quantum Dynamics of Simple Systems, edited by, G. L. Oppo, S. M. Barnett, E. Riis, and, M. Wilkenson, (Springer, New York, 1996), p. 267.
    • (1996) Quantum Dynamics of Simple Systems , pp. 267
    • Stenholm, S.1
  • 20
    • 0033685783 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.61.062104
    • M. Wilkinson and M. A. Morgan, Phys. Rev. A 61, 062104 (2000). 10.1103/PhysRevA.61.062104
    • (2000) Phys. Rev. A , vol.61 , pp. 062104
    • Wilkinson, M.1    Morgan, M.A.2
  • 23
    • 33645093954 scopus 로고    scopus 로고
    • 10.1016/j.physleta.2005.12.052
    • T. Vértesi and R. Englman, Phys. Lett. A 353, 11 (2006). 10.1016/j.physleta.2005.12.052
    • (2006) Phys. Lett. A , vol.353 , pp. 11
    • Vértesi, T.1    Englman, R.2
  • 28
    • 49749097372 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.76.024304
    • Z. Wei and M. Ying, Phys. Rev. A 76, 024304 (2007). 10.1103/PhysRevA.76. 024304
    • (2007) Phys. Rev. A , vol.76 , pp. 024304
    • Wei, Z.1    Ying, M.2
  • 29
    • 41449102472 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.77.032109
    • Y. Zhao, Phys. Rev. A 77, 032109 (2008). 10.1103/PhysRevA.77.032109
    • (2008) Phys. Rev. A , vol.77 , pp. 032109
    • Zhao, Y.1
  • 34
    • 0000321758 scopus 로고
    • 10.1143/JPSJ.5.435
    • T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950). 10.1143/JPSJ.5.435
    • (1950) J. Phys. Soc. Jpn. , vol.5 , pp. 435
    • Kato, T.1
  • 37
    • 18444397177 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.71.012331
    • M. S. Sarandy and D. A. Lidar, Phys. Rev. A 71, 012331 (2005). 10.1103/PhysRevA.71.012331
    • (2005) Phys. Rev. A , vol.71 , pp. 012331
    • Sarandy, M.S.1    Lidar, D.A.2
  • 38
    • 68549095815 scopus 로고    scopus 로고
    • The path parametrization is here s (t) =t/T=εt[0,1] and Hε (t) =H [s (t)], where T is the evolution time. The Schrödinger equation is then isi;ε (t) □ dt = Hε (t) | Ψε (t) □ or iε d | Ψ (s) □ ds =H (s) | Ψ (s) □. More generally, a local control of the speed is possible Hs (t) =H [s (t)] by using a monotonic function s (t)rpolating Hamiltonian H (s) = Hin (1-s) + Hfin s.si;ε (t) □ dt = Hε (t) | Ψε (t) □ or iε d | Ψ (s) □ ds =H (s) | Ψ (s) □. More generally, a local control of the speed is possible Hs (t) =H [s (t)] by using a monotonic function s (t) □[0,1]. An example is the interpolating Hamiltonian H (s) = Hin (1-s) + Hfin s.
    • The path parametrization is here s (t) =t/T=εt[0,1] and Hε (t) =H [s (t)], where T is the evolution time. The Schrödinger equation is then i
  • 40
    • 34748848044 scopus 로고    scopus 로고
    • 10.1016/j.physleta.2007.05.021
    • J. Liu and L.-B. Fu, Phys. Lett. A 370, 17 (2007). 10.1016/j.physleta. 2007.05.021
    • (2007) Phys. Lett. A , vol.370 , pp. 17
    • Liu, J.1    Fu, L.-B.2
  • 42
    • 68549134769 scopus 로고    scopus 로고
    • In this paper, we use x = x† x = ∑ i=i N | xi | 2 and x 1 = ∑ i=1 N | xi |. They verify x 2 ≤ x 1 ≤N x 2. For the matrix norm M = maxx≠0 Mx x .
    • In this paper, we use x = x† x = ∑ i=i N | xi | 2 and x 1 = ∑ i=1 N | xi |. They verify x 2 ≤ x 1 ≤N x 2. For the matrix norm M = maxx≠0 Mx x.
  • 44
    • 68549139729 scopus 로고    scopus 로고
    • For real Hamiltonian H, |m is real, so the (Pancharatnam's phase) arg m| is zero and d dt m|m =2 m| m =0.
    • For real Hamiltonian H, |m is real, so the (Pancharatnam's phase) arg m| is zero and d dt m|m =2 m| m =0.
  • 45
    • 68549118529 scopus 로고    scopus 로고
    • Interestingly enough, very similar considerations have been used by Born and Fock in their seminal paper.
    • Interestingly enough, very similar considerations have been used by Born and Fock in their seminal paper.
  • 47
    • 68549084954 scopus 로고    scopus 로고
    • Simple condition (similar to Weyl's theorem) for the smallness of δ′-1 off-diagonal terms exists. For instance, by choosing H0 as the diagonal part of H′ in the Brillouin-Wigner equation, we can replace conditions 13 essentially by H (t) 1 ΔE (t) ≈ Δ En(t)practical interest because it contains not only Δ En, the gaprelative to |n□, as in Eq. 1, but also the global energy spectral gap ΔE= minm≠ker, this may be of small practical interest because it contains not only Δ En, the gap relative to |n□, as in Eq. 1, but also the global energy spectral gap ΔE= minm≠k | Ek - Em
    • Simple condition (similar to Weyl's theorem) for the smallness of δ′-1 off-diagonal terms exists. For instance, by choosing H0 as the diagonal part of H′ in the Brillouin-Wigner equation, we can replace conditions 13 essentially by H (t) 1 ΔE (t) ≈ Δ En (t)
  • 48
    • 24844472646 scopus 로고
    • 10.1103/PhysRevA.50.843
    • Y. Kayanuma, Phys. Rev. A 50, 843 (1994). 10.1103/PhysRevA.50.843
    • (1994) Phys. Rev. A , vol.50 , pp. 843
    • Kayanuma, Y.1
  • 49
    • 68549115004 scopus 로고    scopus 로고
    • Interestingly enough, the reverse case, namely, the diabatic limit (p1 α/1 to the reverse phenomenon of adiabaticity created after multiple passages (pM ≈0) known as suppression of the tunneling, coherent destruction of tunneling, dynamical localization, or population trapping depending on the context.to the reverse phenomenon of adiabaticity created after multiple passages (pM ≈0) known as suppression of the tunneling, coherent destruction of tunneling, dynamical localization, or population trapping depending on the context.
    • Interestingly enough, the reverse case, namely, the diabatic limit (p1 ≈1) can lead (for instance when α1)
  • 51
    • 66649104441 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.102.220401
    • M. H. S. Amin, Phys. Rev. Lett. 102, 220401 (2009). 10.1103/PhysRevLett. 102.220401
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 220401
    • Amin, M.H.S.1
  • 52
    • 68549116847 scopus 로고    scopus 로고
    • More practical definition of a nonoscillating Hamiltonian than based on the small number of monotonicity change of the adiabatic Hamiltonian H′ would be useful. We conjecture (and hope that someone could demonstrate it) that real Hamiltonians containing sum, product, multiplication, or division of composition of (real) exponential or polynomial functions are of this type. A possible clue for this proof may be based on iterative use of Eq. 6 with the iterative U″, P″, U (3), P (3),... matrices converging toward the wanted diagonalization, as done in the Jacobi algorithm which iterates the N=2 case. During each Jacobi step, the P (m) elements are still of the sum, product, multiplication, or division of composition of (real) exponential or polynomial types. The exponent of the polynomial functions grows, as well as the number of monoticity changes, but slowly enough to be always bounded (they never reach infinity due to the isolated zero theorem).
    • More practical definition of a nonoscillating Hamiltonian than based on the small number of monotonicity change of the adiabatic Hamiltonian H′ would be useful. We conjecture (and hope that someone could demonstrate it) that real Hamiltonians containing sum, product, multiplication, or division of composition of (real) exponential or polynomial functions are of this type. A possible clue for this proof may be based on iterative use of Eq. 6 with the iterative U″, P″, U (3), P (3),... matrices converging toward the wanted diagonalization, as done in the Jacobi algorithm which iterates the N=2 case. During each Jacobi step, the P (m) elements are still of the sum, product, multiplication, or division of composition of (real) exponential or polynomial types. The exponent of the polynomial functions grows, as well as the number of monoticity changes, but slowly enough to be always bounded (they never reach infinity due to the isolated zero theorem).
  • 54
    • 0011621022 scopus 로고
    • 10.1088/0305-4470/17/6/018
    • M. V. Berry, J. Phys. A 17, 1225 (1984). 10.1088/0305-4470/17/6/018
    • (1984) J. Phys. A , vol.17 , pp. 1225
    • Berry, M.V.1
  • 56
    • 33744771952 scopus 로고    scopus 로고
    • 10.1088/1367-2630/8/5/083
    • Y. Rezek and R. Kosloff, New J. Phys. 8, 83 (2006). 10.1088/1367-2630/8/ 5/083
    • (2006) New J. Phys. , vol.8 , pp. 83
    • Rezek, Y.1    Kosloff, R.2
  • 57
    • 84867926408 scopus 로고    scopus 로고
    • 10.1016/S0024-3795(01)00571-7
    • I. C. F. Ipsen, Linear Algebr. Appl. 358, 239 (2003). 10.1016/S0024-3795(01)00571-7
    • (2003) Linear Algebr. Appl. , vol.358 , pp. 239
    • Ipsen, I.C.F.1
  • 58
    • 33745659237 scopus 로고    scopus 로고
    • 10.1016/j.cam.2005.08.019
    • X. Chen and W. Li, J. Comput. Appl. Math. 196, 338 (2006). 10.1016/j.cam.2005.08.019
    • (2006) J. Comput. Appl. Math. , vol.196 , pp. 338
    • Chen, X.1    Li, W.2
  • 60
    • 68549109195 scopus 로고    scopus 로고
    • We wrote En′ 1 simply as En′.
    • We wrote En′ 1 simply as En′.
  • 61
    • 0036542418 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.65.042308
    • J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002). 10.1103/PhysRevA.65.042308
    • (2002) Phys. Rev. A , vol.65 , pp. 042308
    • Roland, J.1    Cerf, N.J.2
  • 62
    • 0000349669 scopus 로고    scopus 로고
    • 10.1016/S0370-1573(98)00022-2
    • M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998). 10.1016/S0370-1573(98)00022-2
    • (1998) Phys. Rep. , vol.304 , pp. 229
    • Grifoni, M.1    Hänggi, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.