-
3
-
-
0942288264
-
Optimal external memory interval management
-
L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM Journal on Computing, 32:1488-1508, 2003.
-
(2003)
SIAM Journal on Computing
, vol.32
, pp. 1488-1508
-
-
Arge, L.1
Vitter, J.S.2
-
4
-
-
0038722250
-
Dynamic point location in general subdivisions
-
H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general subdivisions. J. of Algorithm, 17:342-380, 1994.
-
(1994)
J. of Algorithm
, vol.17
, pp. 342-380
-
-
Baumgarten, H.1
Jung, H.2
Mehlhorn, K.3
-
5
-
-
21044452753
-
Threedimensional layes of maxima
-
A. L. Buchsbaum and M. T. Goodrich. Threedimensional layes of maxima. Algorithmica, 39:275-286, 2004.
-
(2004)
Algorithmica
, vol.39
, pp. 275-286
-
-
Buchsbaum, A.L.1
Goodrich, M.T.2
-
6
-
-
35348864219
-
Point location in o(log n) time, voronoi diagrams in o(n log n) time, and other transdichotomous results in computational geometry
-
Timothy M. Chan. Point location in o(log n) time, voronoi diagrams in o(n log n) time, and other transdichotomous results in computational geometry. In Proc. 47th IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2006.
-
(2006)
Proc. 47th IEEE Annual Symposium on Foundations of Computer Science (FOCS)
-
-
Chan, T.M.1
-
7
-
-
0026929520
-
New results on dynamic planar point location
-
S.W. Cheng and R. Janardan. New results on dynamic planar point location. SIAM Journal on Computing, 21:972-999, 1992.
-
(1992)
SIAM Journal on Computing
, vol.21
, pp. 972-999
-
-
Cheng, S.W.1
Janardan, R.2
-
8
-
-
0029771983
-
A unified approach to dynamic point location, ray shooting, and shortest paths in planar maps
-
Y. J. chiang, F. P. Preparata, and R. Tamassia. A unified approach to dynamic point location, ray shooting, and shortest paths in planar maps. SIAM Journal on Computing, 25:207-233, 1996.
-
(1996)
SIAM Journal on Computing
, vol.25
, pp. 207-233
-
-
Chiang, Y.J.1
Preparata, F.P.2
Tamassia, R.3
-
12
-
-
0028459904
-
Transdichotomous algorithms for minimum spanning trees and shortest paths
-
M. L. Fredman and D. E. Willard. Transdichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences, 48(3):533-551, 1994.
-
(1994)
Journal of Computer and System Sciences
, vol.48
, Issue.3
, pp. 533-551
-
-
Fredman, M.L.1
Willard, D.E.2
-
14
-
-
0032107974
-
Dynamic trees and dynamic point location
-
M. T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. SIAM Journal on Computing, 28(2):612-636, 1998.
-
(1998)
SIAM Journal on Computing
, vol.28
, Issue.2
, pp. 612-636
-
-
Goodrich, M.T.1
Tamassia, R.2
-
16
-
-
0003490409
-
Dynamic fractional cascading
-
K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica, 5:215-241, 1990.
-
(1990)
Algorithmica
, vol.5
, pp. 215-241
-
-
Mehlhorn, K.1
Näher, S.2
-
17
-
-
0038754086
-
Fully dynamic two dimensional range and line segment intersection reporting in logarithmic time
-
C. W. Mortensen. Fully dynamic two dimensional range and line segment intersection reporting in logarithmic time. In Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 618-627, 2003.
-
(2003)
Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA)
, pp. 618-627
-
-
Mortensen, C.W.1
-
19
-
-
0025458836
-
Dynamic planar point location with optimal query time
-
F. P. Preparata and R. Tamassia. Dynamic planar point location with optimal query time. Theoretical Computer Science, 74:94-114, 1990.
-
(1990)
Theoretical Computer Science
, vol.74
, pp. 94-114
-
-
Preparata, F.P.1
Tamassia, R.2
-
21
-
-
0002484064
-
Preserving order in a forest in less than logarithmic time
-
P. van Emde Boas. Preserving order in a forest in less than logarithmic time. Information Processing Letters, 6(3):80-82, 1977.
-
(1977)
Information Processing Letters
, vol.6
, Issue.3
, pp. 80-82
-
-
Van Emde-Boas, P.1
-
23
-
-
0038099300
-
A density control algorithm for doing insertions and deletions in a sequencially ordered fine in good worst-case time
-
D. E. Willard. A density control algorithm for doing insertions and deletions in a sequencially ordered fine in good worst-case time. Information and computation, 97(2):150-174, 1992.
-
(1992)
Information and Computation
, vol.97
, Issue.2
, pp. 150-174
-
-
Willard, D.E.1
|