메뉴 건너뛰기




Volumn 232, Issue 2, 2009, Pages 187-200

The existence of countably many positive solutions for some nonlinear nth order m-point boundary value problems

Author keywords

Boundary value problem; Green's function; Holder's inequality; Krasnoselskii's fixed point theorem; Multiple positive solution

Indexed keywords

BOUNDARY VALUES; HOLDER'S INEQUALITY; KRASNOSELSKII'S FIXED POINT THEOREM; M-POINT BOUNDARY VALUE PROBLEM; MULTIPLE POSITIVE SOLUTION; POSITIVE SOLUTION;

EID: 68349133633     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2009.05.023     Document Type: Article
Times cited : (17)

References (10)
  • 1
    • 0000384610 scopus 로고
    • Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator
    • Il'in V.A., and Moiseev E.I. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differ. Equ. 23 8 (1987) 979-987
    • (1987) Differ. Equ. , vol.23 , Issue.8 , pp. 979-987
    • Il'in, V.A.1    Moiseev, E.I.2
  • 2
    • 0000384611 scopus 로고
    • Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects
    • Il'in V.A., and Moiseev E.I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23 7 (1987) 803-810
    • (1987) Differ. Equ. , vol.23 , Issue.7 , pp. 803-810
    • Il'in, V.A.1    Moiseev, E.I.2
  • 3
    • 0035872025 scopus 로고    scopus 로고
    • Existence of solutions for nonlinear m-point boundary value problems
    • Ma R.Y., and Castaneda N. Existence of solutions for nonlinear m-point boundary value problems. J. Math. Anal. Appl. 256 (2001) 556-567
    • (2001) J. Math. Anal. Appl. , vol.256 , pp. 556-567
    • Ma, R.Y.1    Castaneda, N.2
  • 4
    • 0000897074 scopus 로고    scopus 로고
    • Positive solutions for second order three-point boundary value problems
    • Ma R.Y. Positive solutions for second order three-point boundary value problems. Appl. Math. Lett. 14 (2001) 1-5
    • (2001) Appl. Math. Lett. , vol.14 , pp. 1-5
    • Ma, R.Y.1
  • 5
    • 26444584987 scopus 로고    scopus 로고
    • Positive solutions of three-point boundary value problem for the one-dimensional p-Laplacian with infinitely many singularities
    • Liu B. Positive solutions of three-point boundary value problem for the one-dimensional p-Laplacian with infinitely many singularities. Appl. Math. Lett. 17 (2004) 655-661
    • (2004) Appl. Math. Lett. , vol.17 , pp. 655-661
    • Liu, B.1
  • 6
    • 1242322174 scopus 로고    scopus 로고
    • Positive solutions for three-point boundary value problems with dependence on the first order derivatives
    • Guo Y.P., and Ge W.G. Positive solutions for three-point boundary value problems with dependence on the first order derivatives. J. Math. Anal. Appl. 290 (2004) 291-301
    • (2004) J. Math. Anal. Appl. , vol.290 , pp. 291-301
    • Guo, Y.P.1    Ge, W.G.2
  • 7
    • 0031146437 scopus 로고    scopus 로고
    • Positive solutions for (n - 1, 1) conjugate boundary value problems
    • Eloe Paul.W., and Henderson J. Positive solutions for (n - 1, 1) conjugate boundary value problems. Nonlinear Anal. 28 (1997) 1669-1680
    • (1997) Nonlinear Anal. , vol.28 , pp. 1669-1680
    • Eloe, Paul.W.1    Henderson, J.2
  • 8
    • 0038116447 scopus 로고    scopus 로고
    • Positive solutions for (n - 1, 1) three-point boundary value problems with coefficient the change sign
    • Liu Y.J., and Ge W.G. Positive solutions for (n - 1, 1) three-point boundary value problems with coefficient the change sign. J. Math. Anal. Appl. 282 (2003) 806-825
    • (2003) J. Math. Anal. Appl. , vol.282 , pp. 806-825
    • Liu, Y.J.1    Ge, W.G.2
  • 9
    • 41749088694 scopus 로고    scopus 로고
    • Three positive solutions for a nonlinear nth order m-point boundary value problems
    • Guo Y.P., Ji Y.D., and Zhang J.H. Three positive solutions for a nonlinear nth order m-point boundary value problems. Nonlinear Anal. 68 (2008) 3485-3492
    • (2008) Nonlinear Anal. , vol.68 , pp. 3485-3492
    • Guo, Y.P.1    Ji, Y.D.2    Zhang, J.H.3
  • 10
    • 0037095616 scopus 로고    scopus 로고
    • A multiplicity result for a boundary value problem with infinitely many singularities
    • Kaufmann E.R., and Kosmatov N. A multiplicity result for a boundary value problem with infinitely many singularities. J. Math. Anal. Appl. 269 (2002) 444-453
    • (2002) J. Math. Anal. Appl. , vol.269 , pp. 444-453
    • Kaufmann, E.R.1    Kosmatov, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.