메뉴 건너뛰기




Volumn 4, Issue 4, 2009, Pages

Using neural network predictive control for riser-slugging suppression

Author keywords

Neural model predictive control; Pipeline riser control

Indexed keywords

CONTROL SYSTEMS; DEEP NEURAL NETWORKS; PIPELINES;

EID: 68349117062     PISSN: 19342659     EISSN: None     Source Type: Journal    
DOI: 10.2202/1934-2659.1315     Document Type: Article
Times cited : (5)

References (22)
  • 5
    • 13444273020 scopus 로고    scopus 로고
    • New slug control strategies, tuning rules and experimental results
    • Godhavn J.M., Mehrdad P.F., Fuchs P. (2005). New slug control strategies, tuning rules and experimental results. Journal of Process Control, 15, 547-577.
    • (2005) Journal of Process Control , vol.15 , pp. 547-577
    • Godhavn, J.M.1    Mehrdad, P.F.2    Fuchs, P.3
  • 7
    • 0034497964 scopus 로고    scopus 로고
    • Taming slug flow in pipelines
    • Havre K., Stornes K. and Stray H. (2000).Taming slug flow in pipelines, ABB Review 4, 55-63.
    • (2000) ABB Review , vol.4 , pp. 55-63
    • Havre, K.1    Stornes, K.2    Stray, H.3
  • 8
    • 26844507125 scopus 로고    scopus 로고
    • Model predictive pressure control of steam networks
    • Majanne Y. (2005). Model predictive pressure control of steam networks. Control Engineering Practice, 13, 1499-1505.
    • (2005) Control Engineering Practice , vol.13 , pp. 1499-1505
    • Majanne, Y.1
  • 9
    • 58949092635 scopus 로고    scopus 로고
    • Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process
    • Meleiro L.A.C., Von Zuben F.J., Maciel Filho R. (2009). Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process. Engineering Applications of Artificial Intelligence, 22:2, 201-215.
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.2 , pp. 201-215
    • Meleiro, L.A.C.1    Von Zuben, F.J.2    Maciel Filho, R.3
  • 10
    • 35648934573 scopus 로고    scopus 로고
    • A review of current technologies for severe slugging remediation
    • Mokhatab S., Towler B. F., Purewal S. (2007). A review of current technologies for severe slugging remediation. Petroleum Science and Technology, 25:10, 1235-1245.
    • (2007) Petroleum Science and Technology , vol.25 , Issue.10 , pp. 1235-1245
    • Mokhatab, S.1    Towler, B.F.2    Purewal, S.3
  • 12
    • 0000106040 scopus 로고
    • Universal Approximation Using Radial Basis Function Networks
    • Park J., Sandberg I.W. (1991). Universal Approximation Using Radial Basis Function Networks, Neural Computation, Vol. 3, 246-257.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 14
    • 22044448114 scopus 로고    scopus 로고
    • A neural network model based predictive control approach: Application to a semi-batch reactor
    • Sahli F.M., Matlaya R. (2005). A neural network model based predictive control approach: application to a semi-batch reactor, Int. J. Adv. Manuf. Technol. 26, 161-168.
    • (2005) Int. J. Adv. Manuf. Technol , vol.26 , pp. 161-168
    • Sahli, F.M.1    Matlaya, R.2
  • 18
    • 68349122329 scopus 로고    scopus 로고
    • Stabilization of severe slugging based on lowdimensional nonlinear model
    • Paper 259e
    • Storkaas E., Skogestad S. (2002). Stabilization of severe slugging based on lowdimensional nonlinear model. AIChE Annual meeting, Paper 259e.
    • (2002) AIChE Annual meeting
    • Storkaas, E.1    Skogestad, S.2
  • 19
    • 79960724647 scopus 로고    scopus 로고
    • Controllability analysis of an unstable, nonminimum phase process
    • Storkaas E., Skogestad S. (2005). Controllability analysis of an unstable, nonminimum phase process, 2005 IFAC Congress.
    • (2005) 2005 IFAC Congress
    • Storkaas, E.1    Skogestad, S.2
  • 20
    • 33846311794 scopus 로고    scopus 로고
    • Controllability analysis of two-phase pipeline riser systems at riser slugging conditions
    • Storkaas E., Skogestad S. (2007). Controllability analysis of two-phase pipeline riser systems at riser slugging conditions, Control Engineering Practice 15, 567-581.
    • (2007) Control Engineering Practice , vol.15 , pp. 567-581
    • Storkaas, E.1    Skogestad, S.2
  • 22
    • 0345356987 scopus 로고    scopus 로고
    • Implementation of neural network predictive control to a multivariable chemical reactor
    • Yu D.L., Gomm J.B. (2003). Implementation of neural network predictive control to a multivariable chemical reactor, Control Engineering Practice 11, 1315-1323.
    • (2003) Control Engineering Practice , vol.11 , pp. 1315-1323
    • Yu, D.L.1    Gomm, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.