-
2
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
-
(1991)
Nature
, vol.354
, pp. 56-58
-
-
Iijima, S.1
-
3
-
-
0004232785
-
Pentagons, heptagons and negative curvature in graphite microtubule growth
-
Iijima, S.; Ichihashi, T.; Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992, 356, 776-778.
-
(1992)
Nature
, vol.356
, pp. 776-778
-
-
Iijima, S.1
Ichihashi, T.2
Ando, Y.3
-
4
-
-
33749416974
-
Diamond from graphite
-
Mackay, A.; Terrones, H. Diamond from graphite. Nature 1991, 352, 762-765.
-
(1991)
Nature
, vol.352
, pp. 762-765
-
-
Mackay, A.1
Terrones, H.2
-
5
-
-
0000069029
-
Energetics of negatively curved graphitic carbon
-
Lenosky, T.; Gonze, X.; Teter, M.; Elser, V. Energetics of negatively curved graphitic carbon. Nature 1992, 355, 333-335.
-
(1992)
Nature
, vol.355
, pp. 333-335
-
-
Lenosky, T.1
Gonze, X.2
Teter, M.3
Elser, V.4
-
6
-
-
0001449948
-
Negatively curved graphitic sheet model of amorphous carbon
-
Townsend, S. J.; Lenosky, T. J.; Muller, D. A.; Nichols, C. S.; Elser, V. Negatively curved graphitic sheet model of amorphous carbon. Phys. Rev. Lett. 1992, 69, 921-924.
-
(1992)
Phys. Rev. Lett
, vol.69
, pp. 921-924
-
-
Townsend, S.J.1
Lenosky, T.J.2
Muller, D.A.3
Nichols, C.S.4
Elser, V.5
-
7
-
-
0013278897
-
Triply periodic minimal surfaces decorated with curved graphite
-
Terrones, H.; Mackay, A. Triply periodic minimal surfaces decorated with curved graphite. Chem. Phys. Lett. 1993, 207, 45-50.
-
(1993)
Chem. Phys. Lett
, vol.207
, pp. 45-50
-
-
Terrones, H.1
Mackay, A.2
-
8
-
-
0038184103
-
The structure of negatively curved spongy carbon
-
Benedek, G.; Vahedi-Tafreshi, H.; Barborini, E.; Piseri, P.; Milani, P.; Ducati, C.; Robertson, J. The structure of negatively curved spongy carbon. Diamond Relat. Mater. 2003, 12, 768-773.
-
(2003)
Diamond Relat. Mater
, vol.12
, pp. 768-773
-
-
Benedek, G.1
Vahedi-Tafreshi, H.2
Barborini, E.3
Piseri, P.4
Milani, P.5
Ducati, C.6
Robertson, J.7
-
9
-
-
3042614747
-
Electronic properties of giant fullerenes and complex graphitic nanostructures with novel morphologies
-
Lopez-Urias, F.; Terrones, M.; Terrones, H. Electronic properties of giant fullerenes and complex graphitic nanostructures with novel morphologies. Chem. Phys. Lett. 2003, 381, 683-690.
-
(2003)
Chem. Phys. Lett
, vol.381
, pp. 683-690
-
-
Lopez-Urias, F.1
Terrones, M.2
Terrones, H.3
-
10
-
-
0001604506
-
Quasiperiodic icosahedral graphite sheets and high-genus fullerenes with nonpositive Gaussian curvature
-
Terrones, H.; Terrones, M. Quasiperiodic icosahedral graphite sheets and high-genus fullerenes with nonpositive Gaussian curvature. Phys. Rev. B 1997, 55, 9969-9974.
-
(1997)
Phys. Rev. B
, vol.55
, pp. 9969-9974
-
-
Terrones, H.1
Terrones, M.2
-
11
-
-
0032156585
-
Fullerenes with non-positive Gaussian curvature: Holey-balls and holey-tubes
-
Terrones, H.; Terrones, M. Fullerenes with non-positive Gaussian curvature: Holey-balls and holey-tubes. Fullerene Sci. Technol. 1998, 6, 751-767.
-
(1998)
Fullerene Sci. Technol
, vol.6
, pp. 751-767
-
-
Terrones, H.1
Terrones, M.2
-
12
-
-
0009416098
-
Fullerenes and nanotubes with non-positive Gaussian curvature
-
Terrones, H.; Terrones, M. Fullerenes and nanotubes with non-positive Gaussian curvature. Carbon 1998, 36, 725-730.
-
(1998)
Carbon
, vol.36
, pp. 725-730
-
-
Terrones, H.1
Terrones, M.2
-
13
-
-
0042459053
-
Electronic properties of fullerenes with nonpositive Gaussian curvature: Finite zeolites
-
Ricardo-Chávez, J.; Dorantes-Dávila, J.; Terrones, M.; Terrones, H. Electronic properties of fullerenes with nonpositive Gaussian curvature: Finite zeolites. Phys. Rev. B 1997, 56, 12143-12146.
-
(1997)
Phys. Rev. B
, vol.56
, pp. 12143-12146
-
-
Ricardo-Chávez, J.1
Dorantes-Dávila, J.2
Terrones, M.3
Terrones, H.4
-
14
-
-
0026975994
-
The geometry of hypothetical curved graphite structures
-
Terrones, H.; Mackay, A. The geometry of hypothetical curved graphite structures. Carbon 1992, 30, 1251-1260.
-
(1992)
Carbon
, vol.30
, pp. 1251-1260
-
-
Terrones, H.1
Mackay, A.2
-
15
-
-
21344475907
-
Negatively curved graphite and triply periodic minimal surfaces
-
Terrones, H.; Mackay, A. L. Negatively curved graphite and triply periodic minimal surfaces. J. Math. Chem. 1994, 15, 183-195.
-
(1994)
J. Math. Chem
, vol.15
, pp. 183-195
-
-
Terrones, H.1
Mackay, A.L.2
-
17
-
-
0029220225
-
Morphology of new fullerene families with negative curvature
-
Fujita, M.; Yoshida, M.; Osawa, E. Morphology of new fullerene families with negative curvature. Fullerene Sci. Technol. 1995, 3, 93-105.
-
(1995)
Fullerene Sci. Technol
, vol.3
, pp. 93-105
-
-
Fujita, M.1
Yoshida, M.2
Osawa, E.3
-
18
-
-
0028482639
-
Geometrical and physical properties of hypothetical periodic and aperiodic graphitic structures
-
Terrones, H.; Fayos, J.; Aragon, J. Geometrical and physical properties of hypothetical periodic and aperiodic graphitic structures. Acta Metall. Mater. 1994, 42, 2687-2699.
-
(1994)
Acta Metall. Mater
, vol.42
, pp. 2687-2699
-
-
Terrones, H.1
Fayos, J.2
Aragon, J.3
-
19
-
-
21344477020
-
Curved graphite and its mathematical transformations
-
Terrones, H. Curved graphite and its mathematical transformations. J. Math. Chem. 1994, 15, 143-156.
-
(1994)
J. Math. Chem
, vol.15
, pp. 143-156
-
-
Terrones, H.1
-
20
-
-
15744382961
-
Positive magnetic susceptibility in polygonal nanotube tori
-
Tamura, R.; Ikuta, M.; Hirahara, T.; Tsukada, M. Positive magnetic susceptibility in polygonal nanotube tori. Phys. Rev. B 2005, 71, 045418.
-
(2005)
Phys. Rev. B
, vol.71
, pp. 045418
-
-
Tamura, R.1
Ikuta, M.2
Hirahara, T.3
Tsukada, M.4
-
21
-
-
85128248779
-
-
The dual of a zigzag sp2 carbon chain is a straight strip of alternating triangles, so the neck structures discussed in this article have clear edges in dual space, which in turn facilitates the presentation. For more related discussions, see ref 26 and references therein
-
2 carbon chain is a straight strip of alternating triangles, so the neck structures discussed in this article have clear edges in dual space, which in turn facilitates the presentation. For more related discussions, see ref 26 and references therein.
-
-
-
-
22
-
-
85128247319
-
-
1 = 0, where the rims of the pentagonal prisms are identified at the edges of the inner dodecahedron. In these cases, each face contributes three atoms instead of two and 10 nonagons form on the inner dodecahedron as a result.
-
1 = 0, where the rims of the pentagonal prisms are identified at the edges of the inner dodecahedron. In these cases, each face contributes three atoms instead of two and 10 nonagons form on the inner dodecahedron as a result.
-
-
-
-
23
-
-
68149176374
-
-
There is one more reason for making this choice: Because truncated icosahedron has pentagonal and hexagonal faces only, while necks of these two rotational symmetries are more stable
-
There is one more reason for making this choice: Because truncated icosahedron has pentagonal and hexagonal faces only, while necks of these two rotational symmetries are more stable.
-
-
-
-
25
-
-
68149174046
-
-
We avoid using the phrase definite value because it is impossible to find one since the distances between a polyhedron's center to its faces, the inradius, are in general real numbers, while the geometric indices are natural numbers.
-
We avoid using the phrase "definite value" because it is impossible to find one since the distances between a polyhedron's center to its faces, the inradius, are in general real numbers, while the geometric indices are natural numbers.
-
-
-
-
26
-
-
65249120822
-
Generalized classification scheme of toroidal and helical carbon nanotubes
-
Chuang, C.; Fan, Y.-C.; Jin, B.-Y. Generalized classification scheme of toroidal and helical carbon nanotubes. J. Chem. Inf. Model. 2009, 49, 361-368.
-
(2009)
J. Chem. Inf. Model
, vol.49
, pp. 361-368
-
-
Chuang, C.1
Fan, Y.-C.2
Jin, B.-Y.3
|