메뉴 건너뛰기




Volumn , Issue , 2003, Pages 1045-1051

Gaussian process models of spatial aggregation algorithms

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING ALGORITHM; GAUSSIAN PROCESS MODELS; PERFORMANCE ANALYSIS; PERFORMANCE CHARACTERISTICS; QUALITATIVE BEHAVIOR; QUANTITATIVE FRAMEWORKS; SCIENTIFIC AND ENGINEERING APPLICATIONS; TEMPERATURE AND PRESSURES;

EID: 68149128119     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (25)
  • 3
    • 0035423385 scopus 로고    scopus 로고
    • Influence-Based Model Decomposition for Reasoning about Spatially Distributed Physical Systems
    • C. Bailey-Kellogg and F. Zhao. Influence-Based Model Decomposition for Reasoning about Spatially Distributed Physical Systems. Artificial Intelligence, Vol. 130(2):pagcs 125-166, 2001.
    • (2001) Artificial Intelligence , vol.130 , Issue.2 , pp. 125-166
    • Bailey-Kellogg, C.1    Zhao, F.2
  • 7
    • 0036473286 scopus 로고    scopus 로고
    • Information theoretic sensor data selection for active object recognition and state estimation
    • DOI 10.1109/34.982896
    • J. Denzler and C M . Brown. Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24(2):pages 145-157, Feb 2002. (Pubitemid 34198205)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.2 , pp. 145-157
    • Denzler, J.1    Brown, C.M.2
  • 12
    • 0000695404 scopus 로고
    • Information-Based Objective Functions for Active Data Selection
    • D.J. MacKay. Information-Based Objective Functions for Active Data Selection. Neural Computation, Vol. 4(4):pages 590-604, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.1
  • 14
    • 31144451831 scopus 로고    scopus 로고
    • Hierarchical Modeling with Gaussian Processes
    • U. Menzefricke. Hierarchical Modeling with Gaussian Processes. Communications in Statistics, Vol. 29(4):pages 1089-1108, 2000.
    • (2000) Communications in Statistics , vol.29 , Issue.4 , pp. 1089-1108
    • Menzefricke, U.1
  • 15
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian Learning for Neural Networks
    • Springer-Verlag, NY
    • R.M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, NY, 1996. Lecture Notes in Statistics No. 118.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 24
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond
    • M.I. Jordan, editor, MIT Press, Cambridge, MA
    • C.K.I. Williams. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond. In M.I. Jordan, editor, Learning in Graphical Models, pages 599-621. MIT Press, Cambridge, MA, 1998.
    • (1998) Learning in Graphical Models , pp. 599-621
    • Williams, C.K.I.1
  • 25
    • 0002925760 scopus 로고    scopus 로고
    • Spatial aggregation: Theory and applications
    • K.M. Yip and F Zhao. Spatial Aggregation: Theory and Applications. Journal of Artificial Intelligence Research, Vol. 5:pages 1-26, 1996. (Pubitemid 126646163)
    • (1996) Journal of Artificial Intelligence Research , vol.5 , pp. 1-26
    • Yip, K.1    Zhao, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.